Spaces:
Sleeping
Sleeping
File size: 16,269 Bytes
579f772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Stream/Video Sync Detection with FCN-SyncNet
Detect audio-video sync offset in video files or live HLS streams.
Uses trained FCN model (epoch 2) with calibration for accurate results.
Usage:
# Video file
python test_sync_detection.py --video path/to/video.mp4
# HLS stream
python test_sync_detection.py --hls http://example.com/stream.m3u8 --duration 15
# Compare FCN with Original SyncNet
python test_sync_detection.py --video video.mp4 --compare
# Original SyncNet only
python test_sync_detection.py --video video.mp4 --original
# With verbose output
python test_sync_detection.py --video video.mp4 --verbose
# Custom model
python test_sync_detection.py --video video.mp4 --model checkpoints/custom.pth
"""
import os
import sys
import argparse
import torch
import time
# Enable UTF-8 output on Windows
if sys.platform == 'win32':
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', errors='replace')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8', errors='replace')
def load_model(model_path=None, device='cpu'):
"""Load the FCN-SyncNet model with trained weights."""
from SyncNetModel_FCN import StreamSyncFCN
# Default to our best trained model
if model_path is None:
model_path = 'checkpoints/syncnet_fcn_epoch2.pth'
# Check if it's a checkpoint file (.pth) or original syncnet model
if model_path.endswith('.pth') and os.path.exists(model_path):
# Load our trained FCN checkpoint
model = StreamSyncFCN(
max_offset=15,
pretrained_syncnet_path=None,
auto_load_pretrained=False
)
checkpoint = torch.load(model_path, map_location=device)
# Load only encoder weights (skip mismatched head)
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
encoder_state = {k: v for k, v in state_dict.items()
if 'audio_encoder' in k or 'video_encoder' in k}
model.load_state_dict(encoder_state, strict=False)
epoch = checkpoint.get('epoch', '?')
print(f"β Loaded trained FCN model (epoch {epoch})")
else:
model.load_state_dict(checkpoint, strict=False)
print(f"β Loaded model weights")
elif os.path.exists(model_path):
# Load original SyncNet pretrained model
model = StreamSyncFCN(
pretrained_syncnet_path=model_path,
auto_load_pretrained=True
)
print(f"β Loaded pretrained SyncNet from: {model_path}")
else:
print(f"β Model not found: {model_path}")
print(" Using random initialization (results may be unreliable)")
model = StreamSyncFCN(
pretrained_syncnet_path=None,
auto_load_pretrained=False
)
model.eval()
return model.to(device)
def load_original_syncnet(model_path='data/syncnet_v2.model', device='cpu'):
"""Load the original SyncNet model for comparison."""
from SyncNetInstance import SyncNetInstance
model = SyncNetInstance()
model.loadParameters(model_path)
print(f"β Loaded Original SyncNet from: {model_path}")
return model
def run_original_syncnet(model, video_path, verbose=False):
"""
Run original SyncNet on a video file.
Returns:
dict with offset_frames, offset_seconds, confidence, processing_time
"""
import argparse
# Create required options object
opt = argparse.Namespace()
opt.tmp_dir = 'data/work/pytmp'
opt.reference = 'original_test'
opt.batch_size = 20
opt.vshift = 15
start_time = time.time()
# Run evaluation
offset, confidence, dist = model.evaluate(opt, video_path)
elapsed = time.time() - start_time
return {
'offset_frames': offset,
'offset_seconds': offset / 25.0,
'confidence': confidence,
'min_dist': dist,
'processing_time': elapsed
}
def apply_calibration(raw_offset, calibration_offset=3, calibration_scale=-0.5, reference_raw=-15):
"""
Apply linear calibration to raw model output.
Calibration formula: calibrated = offset + scale * (raw - reference)
Default: calibrated = 3 + (-0.5) * (raw - (-15))
This corrects for systematic bias in the FCN model's predictions.
"""
return calibration_offset + calibration_scale * (raw_offset - reference_raw)
def detect_sync(video_path=None, hls_url=None, duration=10, model=None,
verbose=False, use_calibration=True):
"""
Detect audio-video sync offset.
Args:
video_path: Path to video file
hls_url: HLS stream URL (.m3u8)
duration: Capture duration for HLS (seconds)
model: Pre-loaded model (optional)
verbose: Print detailed output
use_calibration: Apply calibration correction
Returns:
dict with offset_frames, offset_seconds, confidence, raw_offset
"""
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load model if not provided
if model is None:
model = load_model(device=device)
start_time = time.time()
# Process video or HLS
if video_path:
# Use the same method as detect_sync.py for consistency
if use_calibration:
offset, confidence, raw_offset = model.detect_offset_correlation(
video_path,
calibration_offset=3,
calibration_scale=-0.5,
calibration_baseline=-15,
verbose=verbose
)
else:
raw_offset, confidence = model.process_video_file(
video_path,
verbose=verbose
)
offset = raw_offset
elif hls_url:
raw_offset, confidence = model.process_hls_stream(
hls_url,
segment_duration=duration,
verbose=verbose
)
if use_calibration:
offset = apply_calibration(raw_offset)
else:
offset = raw_offset
else:
raise ValueError("Must provide either video_path or hls_url")
elapsed = time.time() - start_time
return {
'offset_frames': round(offset),
'offset_seconds': offset / 25.0,
'confidence': confidence,
'raw_offset': raw_offset if 'raw_offset' in dir() else offset,
'processing_time': elapsed
}
def print_results(result, source_name, model_name="FCN-SyncNet"):
"""Print formatted results."""
offset = result['offset_frames']
offset_sec = result['offset_seconds']
confidence = result['confidence']
elapsed = result['processing_time']
print()
print("=" * 60)
print(f" {model_name} Detection Result")
print("=" * 60)
print(f" Source: {source_name}")
print(f" Offset: {offset:+d} frames ({offset_sec:+.3f}s)")
print(f" Confidence: {confidence:.6f}")
print(f" Time: {elapsed:.2f}s")
print("=" * 60)
# Interpretation
if offset > 1:
print(f" β Audio is {offset} frames AHEAD of video")
print(f" (delay audio by {abs(offset_sec):.3f}s to fix)")
elif offset < -1:
print(f" β Audio is {abs(offset)} frames BEHIND video")
print(f" (advance audio by {abs(offset_sec):.3f}s to fix)")
else:
print(" β Audio and video are IN SYNC")
print()
def print_comparison(fcn_result, original_result, source_name):
"""Print side-by-side comparison of both models."""
print()
print("β" + "β" * 70 + "β")
print("β" + " Model Comparison Results".center(70) + "β")
print("β" + "β" * 70 + "β")
print()
print(f" Source: {source_name}")
print()
print(" " + "-" * 66)
print(f" {'Metric':<20} {'FCN-SyncNet':>20} {'Original SyncNet':>20}")
print(" " + "-" * 66)
fcn_off = fcn_result['offset_frames']
orig_off = original_result['offset_frames']
print(f" {'Offset (frames)':<20} {fcn_off:>+20d} {orig_off:>+20d}")
print(f" {'Offset (seconds)':<20} {fcn_result['offset_seconds']:>+20.3f} {original_result['offset_seconds']:>+20.3f}")
print(f" {'Confidence':<20} {fcn_result['confidence']:>20.4f} {original_result['confidence']:>20.4f}")
print(f" {'Time (seconds)':<20} {fcn_result['processing_time']:>20.2f} {original_result['processing_time']:>20.2f}")
print(" " + "-" * 66)
# Agreement check
diff = abs(fcn_off - orig_off)
if diff == 0:
print(" β Both models AGREE perfectly!")
elif diff <= 2:
print(f" β Models differ by {diff} frame(s) (close agreement)")
else:
print(f" β Models differ by {diff} frames")
print()
def main():
parser = argparse.ArgumentParser(
description='FCN-SyncNet - Audio-Video Sync Detection',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
Video file: python test_sync_detection.py --video video.mp4
HLS stream: python test_sync_detection.py --hls http://stream.m3u8 --duration 15
Compare: python test_sync_detection.py --video video.mp4 --compare
Original: python test_sync_detection.py --video video.mp4 --original
Verbose: python test_sync_detection.py --video video.mp4 --verbose
"""
)
parser.add_argument('--video', type=str, help='Path to video file')
parser.add_argument('--hls', type=str, help='HLS stream URL (.m3u8)')
parser.add_argument('--model', type=str, default=None,
help='Model checkpoint (default: checkpoints/syncnet_fcn_epoch2.pth)')
parser.add_argument('--duration', type=int, default=10,
help='Duration for HLS capture (seconds, default: 10)')
parser.add_argument('--verbose', '-v', action='store_true',
help='Show detailed processing info')
parser.add_argument('--no-calibration', action='store_true',
help='Disable calibration correction')
parser.add_argument('--json', action='store_true',
help='Output results as JSON')
parser.add_argument('--compare', action='store_true',
help='Compare FCN-SyncNet with Original SyncNet')
parser.add_argument('--original', action='store_true',
help='Use Original SyncNet only (not FCN)')
args = parser.parse_args()
# Validate input
if not args.video and not args.hls:
print("Error: Please provide either --video or --hls")
parser.print_help()
return 1
# Original SyncNet doesn't support HLS
if args.hls and (args.original or args.compare):
print("Error: Original SyncNet does not support HLS streams")
print(" Use --video for comparison mode")
return 1
if not args.json:
print()
if args.original:
print("ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print("β Original SyncNet - Audio-Video Sync Detection β")
print("ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
elif args.compare:
print("ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print("β Sync Detection - FCN vs Original SyncNet β")
print("ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
else:
print("ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print("β FCN-SyncNet - Audio-Video Sync Detection β")
print("ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ")
print()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if not args.json:
print(f"Device: {device}")
try:
source = os.path.basename(args.video) if args.video else args.hls
# Run Original SyncNet only
if args.original:
original_model = load_original_syncnet()
if not args.json:
print(f"\nProcessing: {args.video}")
result = run_original_syncnet(original_model, args.video, args.verbose)
if args.json:
import json
result['source'] = source
result['model'] = 'original_syncnet'
print(json.dumps(result, indent=2))
else:
print_results(result, source, "Original SyncNet")
return 0
# Run comparison mode
if args.compare:
# Load both models
fcn_model = load_model(args.model, device)
original_model = load_original_syncnet()
if not args.json:
print(f"\nProcessing: {args.video}")
print("\n[1/2] Running FCN-SyncNet...")
fcn_result = detect_sync(
video_path=args.video,
model=fcn_model,
verbose=args.verbose,
use_calibration=not args.no_calibration
)
if not args.json:
print("[2/2] Running Original SyncNet...")
original_result = run_original_syncnet(original_model, args.video, args.verbose)
if args.json:
import json
output = {
'source': source,
'fcn_syncnet': fcn_result,
'original_syncnet': original_result
}
print(json.dumps(output, indent=2))
else:
print_comparison(fcn_result, original_result, source)
return 0
# Default: FCN-SyncNet only
model = load_model(args.model, device)
if args.video:
if not args.json:
print(f"\nProcessing: {args.video}")
result = detect_sync(
video_path=args.video,
model=model,
verbose=args.verbose,
use_calibration=not args.no_calibration
)
else: # HLS
if not args.json:
print(f"\nProcessing HLS: {args.hls}")
print(f"Capturing {args.duration} seconds...")
result = detect_sync(
hls_url=args.hls,
duration=args.duration,
model=model,
verbose=args.verbose,
use_calibration=not args.no_calibration
)
source = args.hls
# Output results
if args.json:
import json
result['source'] = source
print(json.dumps(result, indent=2))
else:
print_results(result, source)
return 0
except FileNotFoundError:
print(f"\nβ Error: File not found - {args.video or args.hls}")
return 1
except Exception as e:
print(f"\nβ Error: {e}")
if args.verbose:
import traceback
traceback.print_exc()
return 1
if __name__ == "__main__":
sys.exit(main())
|