File size: 21,243 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#!/usr/bin/python
# -*- coding: utf-8 -*-

"""
IMPROVED Training Script for SyncNetFCN on VoxCeleb2

Key Fixes:
1. Corrected loss function: CrossEntropyLoss for offset prediction (31 classes)
2. Removed dummy data fallback
3. Reduced logging overhead
4. Added proper metrics tracking (exact accuracy, ±1 frame accuracy, MAE)
5. Added temporal consistency regularization
6. Better learning rate scheduling

Usage:
    python train_syncnet_fcn_improved.py --data_dir E:/voxceleb2_dataset/VoxCeleb2/dev --pretrained_model data/syncnet_v2.model --checkpoint checkpoints/syncnet_fcn_epoch2.pth
"""

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import os
import argparse
import numpy as np
from SyncNetModel_FCN import StreamSyncFCN
import glob
import random
import cv2
import subprocess
from scipy.io import wavfile
import python_speech_features
import time


class VoxCeleb2DatasetImproved(Dataset):
    """Improved VoxCeleb2 dataset loader with fixed label format and no dummy data."""
    
    def __init__(self, data_dir, max_offset=15, video_length=25, temp_dir='temp_dataset'):
        """
        Args:
            data_dir: Path to VoxCeleb2 root directory
            max_offset: Maximum frame offset for negative samples
            video_length: Number of frames per clip
            temp_dir: Temporary directory for audio extraction
        """
        self.data_dir = data_dir
        self.max_offset = max_offset
        self.video_length = video_length
        self.temp_dir = temp_dir
        
        os.makedirs(temp_dir, exist_ok=True)
        
        # Find all video files
        self.video_files = glob.glob(os.path.join(data_dir, '**', '*.mp4'), recursive=True)
        print(f"Found {len(self.video_files)} videos in dataset")
        
        # Track failed samples
        self.failed_samples = set()
    
    def __len__(self):
        return len(self.video_files)
    
    def _extract_audio_mfcc(self, video_path):
        """Extract audio and compute MFCC features."""
        video_id = os.path.splitext(os.path.basename(video_path))[0]
        audio_path = os.path.join(self.temp_dir, f'{video_id}_audio.wav')
        
        try:
            # Extract audio using FFmpeg
            cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000',
                   '-vn', '-acodec', 'pcm_s16le', audio_path]
            result = subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE, timeout=30)
            
            if result.returncode != 0:
                raise RuntimeError(f"FFmpeg failed")
            
            # Read audio and compute MFCC
            sample_rate, audio = wavfile.read(audio_path)
            
            # Ensure audio is 1D
            if isinstance(audio, np.ndarray) and len(audio.shape) > 1:
                audio = audio.mean(axis=1)
            
            if not isinstance(audio, np.ndarray) or audio.size == 0:
                raise ValueError(f"Audio data is empty")
            
            # Compute MFCC
            mfcc = python_speech_features.mfcc(audio, sample_rate, numcep=13)
            mfcc_tensor = torch.FloatTensor(mfcc.T).unsqueeze(0).unsqueeze(0)
            
            # Clean up temp file
            if os.path.exists(audio_path):
                try:
                    os.remove(audio_path)
                except Exception:
                    pass
            
            return mfcc_tensor
            
        except Exception as e:
            if os.path.exists(audio_path):
                try:
                    os.remove(audio_path)
                except Exception:
                    pass
            raise RuntimeError(f"Failed to extract audio: {e}")
    
    def _extract_video_frames(self, video_path, target_size=(112, 112)):
        """Extract video frames as tensor."""
        cap = cv2.VideoCapture(video_path)
        frames = []
        
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frame = cv2.resize(frame, target_size)
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(frame.astype(np.float32) / 255.0)
        
        cap.release()
        
        if not frames:
            raise ValueError(f"No frames extracted")
        
        frames_array = np.stack(frames, axis=0)
        video_tensor = torch.FloatTensor(frames_array).permute(3, 0, 1, 2).unsqueeze(0)
        
        return video_tensor
    
    def _crop_or_pad_video(self, video_tensor, target_length):
        """Crop or pad video to target length."""
        B, C, T, H, W = video_tensor.shape
        
        if T > target_length:
            start = random.randint(0, T - target_length)
            return video_tensor[:, :, start:start+target_length, :, :]
        elif T < target_length:
            pad_length = target_length - T
            last_frame = video_tensor[:, :, -1:, :, :].repeat(1, 1, pad_length, 1, 1)
            return torch.cat([video_tensor, last_frame], dim=2)
        else:
            return video_tensor
    
    def _crop_or_pad_audio(self, audio_tensor, target_length):
        """Crop or pad audio to target length."""
        B, C, F, T = audio_tensor.shape
        
        if T > target_length:
            start = random.randint(0, T - target_length)
            return audio_tensor[:, :, :, start:start+target_length]
        elif T < target_length:
            pad_length = target_length - T
            padding = torch.zeros(B, C, F, pad_length)
            return torch.cat([audio_tensor, padding], dim=3)
        else:
            return audio_tensor
    
    def __getitem__(self, idx):
        """
        Returns:
            audio: [1, 13, T] MFCC features
            video: [3, T_frames, H, W] video frames
            offset: Ground truth offset in frames (integer from -15 to +15)
        """
        video_path = self.video_files[idx]
        
        # Skip previously failed samples
        if idx in self.failed_samples:
            return self.__getitem__((idx + 1) % len(self))
        
        # Balanced offset distribution
        # 20% synced (offset=0), 80% distributed across other offsets
        if random.random() < 0.2:
            offset = 0
        else:
            # Exclude 0 from choices
            offset_choices = [o for o in range(-self.max_offset, self.max_offset + 1) if o != 0]
            offset = random.choice(offset_choices)
        
        # Log occasionally (every 1000 samples instead of random 1%)
        if idx % 1000 == 0:
            print(f"[INFO] Processing sample {idx}: offset={offset}")
        
        max_retries = 3
        for attempt in range(max_retries):
            try:
                # Extract audio MFCC features
                audio = self._extract_audio_mfcc(video_path)
                
                # Extract video frames
                video = self._extract_video_frames(video_path)
                
                # Apply temporal offset for negative samples
                if offset != 0:
                    if offset > 0:
                        # Shift video forward (cut from beginning)
                        video = video[:, :, offset:, :, :]
                    else:
                        # Shift video backward (cut from end)
                        video = video[:, :, :offset, :, :]
                
                # Crop/pad to fixed length
                video = self._crop_or_pad_video(video, self.video_length)
                audio = self._crop_or_pad_audio(audio, self.video_length * 4)
                
                # Remove batch dimension
                audio = audio.squeeze(0)  # [1, 13, T]
                video = video.squeeze(0)  # [3, T, H, W]
                
                # Validate shapes
                if audio.shape[0] != 1 or audio.shape[1] != 13:
                    raise ValueError(f"Audio MFCC shape mismatch: {audio.shape}")
                if audio.shape[2] != self.video_length * 4:
                     # Force fix length if mismatch (should be handled by crop_or_pad but double check)
                     audio = self._crop_or_pad_audio(audio.unsqueeze(0), self.video_length * 4).squeeze(0)
                
                if video.shape[0] != 3 or video.shape[2] != 112 or video.shape[3] != 112:
                    raise ValueError(f"Video frame shape mismatch: {video.shape}")
                if video.shape[1] != self.video_length:
                    # Force fix length
                    video = self._crop_or_pad_video(video.unsqueeze(0), self.video_length).squeeze(0)

                # Final check
                if audio.shape != (1, 13, 100) or video.shape != (3, 25, 112, 112):
                     raise ValueError(f"Final shape mismatch: Audio {audio.shape}, Video {video.shape}")
                
                return {
                    'audio': audio,
                    'video': video,
                    'offset': torch.tensor(offset, dtype=torch.long),  # Integer offset, not binary
                }
                
            except Exception as e:
                if attempt == max_retries - 1:
                    # Mark as failed and try next sample
                    self.failed_samples.add(idx)
                    if idx % 100 == 0:  # Only log occasionally
                        print(f"[WARN] Sample {idx} failed after {max_retries} attempts: {str(e)[:100]}")
                    return self.__getitem__((idx + 1) % len(self))
                continue


class OffsetRegressionLoss(nn.Module):
    """L1 regression loss for continuous offset prediction."""
    
    def __init__(self):
        super(OffsetRegressionLoss, self).__init__()
        self.l1 = nn.L1Loss()  # More robust to outliers than MSE
    
    def forward(self, predicted_offsets, target_offsets):
        """
        Args:
            predicted_offsets: [B, 1, T] - model output (continuous offset predictions)
            target_offsets: [B] - ground truth offset in frames (float)
        
        Returns:
            loss: scalar
        """
        B, C, T = predicted_offsets.shape
        
        # Average over time dimension
        predicted_offsets_avg = predicted_offsets.mean(dim=2).squeeze(1)  # [B]
        
        # L1 loss
        loss = self.l1(predicted_offsets_avg, target_offsets.float())
        
        return loss


def temporal_consistency_loss(predicted_offsets):
    """
    Encourage smooth predictions over time.
    
    Args:
        predicted_offsets: [B, 1, T]
    
    Returns:
        consistency_loss: scalar
    """
    # Compute difference between adjacent timesteps
    temporal_diff = predicted_offsets[:, :, 1:] - predicted_offsets[:, :, :-1]
    consistency_loss = (temporal_diff ** 2).mean()
    return consistency_loss


def compute_metrics(predicted_offsets, target_offsets, max_offset=125):
    """
    Compute comprehensive metrics for offset regression.
    
    Args:
        predicted_offsets: [B, 1, T]
        target_offsets: [B]
    
    Returns:
        dict with metrics
    """
    B, C, T = predicted_offsets.shape
    
    # Average over time
    predicted_offsets_avg = predicted_offsets.mean(dim=2).squeeze(1)  # [B]
    
    # Mean absolute error
    mae = torch.abs(predicted_offsets_avg - target_offsets).mean()
    
    # Root mean squared error
    rmse = torch.sqrt(((predicted_offsets_avg - target_offsets) ** 2).mean())
    
    # Error buckets
    acc_1frame = (torch.abs(predicted_offsets_avg - target_offsets) <= 1).float().mean()
    acc_1sec = (torch.abs(predicted_offsets_avg - target_offsets) <= 25).float().mean()
    
    # Strict Sync Score (1 - error/25_frames)
    # 1.0 = perfect sync
    # 0.0 = >1 second error (unusable)
    abs_error = torch.abs(predicted_offsets_avg - target_offsets)
    sync_score = 1.0 - (abs_error / 25.0) # 25 frames = 1 second
    sync_score = torch.clamp(sync_score, 0.0, 1.0).mean()
    
    return {
        'mae': mae.item(),
        'rmse': rmse.item(),
        'acc_1frame': acc_1frame.item(),
        'acc_1sec': acc_1sec.item(),
        'sync_score': sync_score.item()
    }


def train_epoch(model, dataloader, optimizer, criterion, device, epoch_num):
    """Train for one epoch with regression metrics."""
    model.train()
    total_loss = 0
    total_offset_loss = 0
    total_consistency_loss = 0
    
    metrics_accum = {'mae': 0, 'rmse': 0, 'acc_1frame': 0, 'acc_1sec': 0, 'sync_score': 0}
    num_batches = 0
    
    import gc
    for batch_idx, batch in enumerate(dataloader):
        audio = batch['audio'].to(device)
        video = batch['video'].to(device)
        offsets = batch['offset'].to(device)
        
        # Forward pass
        optimizer.zero_grad()
        predicted_offsets, _, _ = model(audio, video)
        
        # Compute losses
        offset_loss = criterion(predicted_offsets, offsets)
        consistency_loss = temporal_consistency_loss(predicted_offsets)
        
        # Combined loss
        loss = offset_loss + 0.1 * consistency_loss
        
        # Backward pass
        loss.backward()
        optimizer.step()
        
        # Statistics
        total_loss += loss.item()
        total_offset_loss += offset_loss.item()
        total_consistency_loss += consistency_loss.item()
        
        # Compute metrics
        with torch.no_grad():
            metrics = compute_metrics(predicted_offsets, offsets)
            for key in metrics_accum:
                metrics_accum[key] += metrics[key]
        
        num_batches += 1
        
        # Log every 10 batches
        if batch_idx % 10 == 0:
            print(f'  Batch {batch_idx}/{len(dataloader)}, '
                  f'Loss: {loss.item():.4f}, '
                  f'MAE: {metrics["mae"]:.2f} frames, '
                  f'Score: {metrics["sync_score"]:.4f}')
        
        # Clean up
        del audio, video, offsets, predicted_offsets
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    # Average metrics
    avg_loss = total_loss / num_batches
    avg_offset_loss = total_offset_loss / num_batches
    avg_consistency_loss = total_consistency_loss / num_batches
    
    for key in metrics_accum:
        metrics_accum[key] /= num_batches
    
    return avg_loss, avg_offset_loss, avg_consistency_loss, metrics_accum


def main():
    parser = argparse.ArgumentParser(description='Train SyncNetFCN (Improved)')
    parser.add_argument('--data_dir', type=str, required=True, help='VoxCeleb2 root directory')
    parser.add_argument('--pretrained_model', type=str, default='data/syncnet_v2.model', 
                       help='Pretrained SyncNet model')
    parser.add_argument('--checkpoint', type=str, default=None, 
                       help='Resume from checkpoint (optional)')
    parser.add_argument('--batch_size', type=int, default=4, help='Batch size (default: 4)')
    parser.add_argument('--epochs', type=int, default=20, help='Number of epochs')
    parser.add_argument('--lr', type=float, default=0.00001, help='Learning rate (lowered from 0.001)')
    parser.add_argument('--output_dir', type=str, default='checkpoints_improved', help='Output directory')
    parser.add_argument('--use_attention', action='store_true', help='Use attention model')
    parser.add_argument('--num_workers', type=int, default=2, help='DataLoader workers')
    parser.add_argument('--max_offset', type=int, default=125, help='Max offset in frames (default: 125)')
    parser.add_argument('--unfreeze_epoch', type=int, default=10, help='Epoch to unfreeze all layers (default: 10)')
    args = parser.parse_args()
    
    # Device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f'Using device: {device}')
    
    # Create output directory
    os.makedirs(args.output_dir, exist_ok=True)
    
    # Create model with transfer learning (max_offset=125 for ±5 seconds)
    print(f'Creating model with max_offset={args.max_offset}...')
    model = StreamSyncFCN(
        max_offset=args.max_offset,  # ±5 seconds at 25fps
        pretrained_syncnet_path=args.pretrained_model,
        auto_load_pretrained=True,
        use_attention=args.use_attention
    )
    
    # Load from checkpoint if provided
    start_epoch = 0
    if args.checkpoint and os.path.exists(args.checkpoint):
        print(f'Loading checkpoint: {args.checkpoint}')
        checkpoint = torch.load(args.checkpoint, map_location='cpu')
        model.load_state_dict(checkpoint['model_state_dict'])
        start_epoch = checkpoint.get('epoch', 0)
        print(f'Resuming from epoch {start_epoch}')
    
    model = model.to(device)
    print(f'Model created. Pretrained conv layers loaded and frozen.')
    
    # Dataset and dataloader
    print(f'Loading dataset with max_offset={args.max_offset}...')
    dataset = VoxCeleb2DatasetImproved(args.data_dir, max_offset=args.max_offset)
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, 
                           num_workers=args.num_workers, pin_memory=True)
    
    # Loss and optimizer (REGRESSION)
    criterion = OffsetRegressionLoss()
    
    # Only optimize non-frozen parameters
    trainable_params = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.Adam(trainable_params, lr=args.lr)
    
    # Learning rate scheduler
    scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
        optimizer, 
        T_0=5,       # Restart every 5 epochs
        T_mult=2,    # Double restart period each time
        eta_min=1e-7 # Minimum LR
    )
    
    print(f'Trainable parameters: {sum(p.numel() for p in trainable_params):,}')
    print(f'Frozen parameters: {sum(p.numel() for p in model.parameters() if not p.requires_grad):,}')
    print(f'Learning rate: {args.lr}')
    
    # Training loop
    print('\\nStarting training...')
    print('='*80)
    
    best_tolerance_acc = 0
    
    for epoch in range(start_epoch, start_epoch + args.epochs):
        print(f'\\nEpoch {epoch+1}/{start_epoch + args.epochs}')
        print('-'*80)
        
        # Unfreeze layers if reached unfreeze_epoch
        if epoch + 1 == args.unfreeze_epoch:
            print(f'\\n🔓 Unfreezing all layers for fine-tuning at epoch {epoch+1}...')
            model.unfreeze_all_layers()
            
            # Lower learning rate for fine-tuning
            new_lr = args.lr * 0.1
            print(f'📉 Lowering learning rate to {new_lr} for fine-tuning')
            
            # Re-initialize optimizer with all parameters
            trainable_params = [p for p in model.parameters() if p.requires_grad]
            optimizer = optim.Adam(trainable_params, lr=new_lr)
            
            # Re-initialize scheduler
            scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
                optimizer, T_0=5, T_mult=2, eta_min=1e-8
            )
            print(f'Trainable parameters now: {sum(p.numel() for p in trainable_params):,}')
        
        avg_loss, avg_offset_loss, avg_consistency_loss, metrics = train_epoch(
            model, dataloader, optimizer, criterion, device, epoch
        )
        
        # Step scheduler
        scheduler.step()
        current_lr = optimizer.param_groups[0]['lr']
        
        print(f'\nEpoch {epoch+1} Summary:')
        print(f'  Total Loss: {avg_loss:.4f}')
        print(f'  Offset Loss: {avg_offset_loss:.4f}')
        print(f'  Consistency Loss: {avg_consistency_loss:.4f}')
        print(f'  MAE: {metrics["mae"]:.2f} frames ({metrics["mae"]/25:.3f} seconds)')
        print(f'  RMSE: {metrics["rmse"]:.2f} frames')
        print(f'  Sync Score: {metrics["sync_score"]:.4f} (1.0=Perfect, 0.0=>1s Error)')
        print(f'  <1 Frame Acc: {metrics["acc_1frame"]*100:.2f}%')
        print(f'  <1 Second Acc: {metrics["acc_1sec"]*100:.2f}%')
        print(f'  Learning Rate: {current_lr:.2e}')
        
        # Save checkpoint
        checkpoint_path = os.path.join(args.output_dir, f'syncnet_fcn_improved_epoch{epoch+1}.pth')
        torch.save({
            'epoch': epoch + 1,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'scheduler_state_dict': scheduler.state_dict(),
            'loss': avg_loss,
            'offset_loss': avg_offset_loss,
            'metrics': metrics,
        }, checkpoint_path)
        print(f'  Checkpoint saved: {checkpoint_path}')
        
        # Save best model based on Sync Score
        if metrics['sync_score'] > best_tolerance_acc:
            best_tolerance_acc = metrics['sync_score']
            best_path = os.path.join(args.output_dir, 'syncnet_fcn_best.pth')
            torch.save({
                'epoch': epoch + 1,
                'model_state_dict': model.state_dict(),
                'metrics': metrics,
            }, best_path)
            print(f'  ✓ New best model saved! (Score: {best_tolerance_acc:.4f})')
    
    print('\n' + '='*80)
    print('Training complete!')
    print(f'Best Sync Score: {best_tolerance_acc:.4f}')
    print(f'Models saved to: {args.output_dir}')


if __name__ == '__main__':
    main()