Spaces:
Sleeping
Sleeping
Update gui.py
Browse files
gui.py
CHANGED
|
@@ -1,386 +1,388 @@
|
|
| 1 |
-
import panel as pn
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import param
|
| 4 |
-
from bokeh.models.formatters import PrintfTickFormatter
|
| 5 |
-
|
| 6 |
-
from calculations import CannabinoidCalculations
|
| 7 |
-
from config import slider_design, slider_style, slider_stylesheet, get_formatter
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class CannabinoidEstimatorGUI(CannabinoidCalculations):
|
| 11 |
-
# DataFrame params for tables
|
| 12 |
-
money_data_unit_df = param.DataFrame(
|
| 13 |
-
pd.DataFrame(),
|
| 14 |
-
precedence=-1, # precedence to hide from param pane if shown
|
| 15 |
-
)
|
| 16 |
-
money_data_time_df = param.DataFrame(pd.DataFrame(), precedence=-1)
|
| 17 |
-
profit_data_df = param.DataFrame(pd.DataFrame(), precedence=-1)
|
| 18 |
-
processing_data_df = param.DataFrame(pd.DataFrame(), precedence=-1)
|
| 19 |
-
|
| 20 |
-
def __init__(self, **params):
|
| 21 |
-
super().__init__(**params)
|
| 22 |
-
self._create_sliders()
|
| 23 |
-
self._create_tables_and_indicators()
|
| 24 |
-
self._update_calculations() # Initial calculation and table update
|
| 25 |
-
|
| 26 |
-
def _create_sliders(self):
|
| 27 |
-
self.batch_frequency_radio = pn.widgets.RadioButtonGroup.from_param(
|
| 28 |
-
self.param.batch_frequency,
|
| 29 |
-
name=self.param.batch_frequency.label,
|
| 30 |
-
options=["Shift", "Day", "Week"],
|
| 31 |
-
button_type="primary",
|
| 32 |
-
)
|
| 33 |
-
|
| 34 |
-
def _create_tables_and_indicators(self):
|
| 35 |
-
# Table for $/kg Biomass and $/kg Output
|
| 36 |
-
self.money_unit_table = pn.widgets.Tabulator(
|
| 37 |
-
self.money_data_unit_df, # Initial empty or pre-filled df
|
| 38 |
-
formatters={
|
| 39 |
-
"$/kg Biomass": get_formatter("$%.02f"),
|
| 40 |
-
"$/kg Output": get_formatter("$%.02f"),
|
| 41 |
-
},
|
| 42 |
-
disabled=True,
|
| 43 |
-
layout="fit_data",
|
| 44 |
-
sizing_mode="fixed",
|
| 45 |
-
align="center",
|
| 46 |
-
show_index=False,
|
| 47 |
-
text_align={
|
| 48 |
-
" ": "right",
|
| 49 |
-
"$/kg Biomass": "center",
|
| 50 |
-
"$/kg Output": "center",
|
| 51 |
-
},
|
| 52 |
-
)
|
| 53 |
-
# Table for Per Shift, Per Day, Per Week
|
| 54 |
-
self.money_time_table = pn.widgets.Tabulator(
|
| 55 |
-
self.money_data_time_df, # Initial empty or pre-filled df
|
| 56 |
-
formatters={
|
| 57 |
-
"Per Shift": get_formatter("$%.02f"),
|
| 58 |
-
"Per Day": get_formatter("$%.02f"),
|
| 59 |
-
"Per Week": get_formatter("$%.02f"),
|
| 60 |
-
},
|
| 61 |
-
disabled=True,
|
| 62 |
-
layout="fit_data",
|
| 63 |
-
sizing_mode="fixed",
|
| 64 |
-
align="center",
|
| 65 |
-
show_index=False,
|
| 66 |
-
text_align={
|
| 67 |
-
" ": "right",
|
| 68 |
-
"Per Shift": "center",
|
| 69 |
-
"Per Day": "center",
|
| 70 |
-
"Per Week": "center",
|
| 71 |
-
},
|
| 72 |
-
)
|
| 73 |
-
self.profit_table = pn.widgets.Tabulator(
|
| 74 |
-
self.profit_data_df, # Initial empty or pre-filled df
|
| 75 |
-
disabled=True,
|
| 76 |
-
layout="fit_data_table",
|
| 77 |
-
sizing_mode="fixed",
|
| 78 |
-
align="center",
|
| 79 |
-
show_index=False,
|
| 80 |
-
text_align={"Metric": "right", "Value": "center"},
|
| 81 |
-
)
|
| 82 |
-
self.processing_table = pn.widgets.Tabulator(
|
| 83 |
-
self.processing_data_df, # Initial empty or pre-filled df
|
| 84 |
-
formatters={},
|
| 85 |
-
disabled=True,
|
| 86 |
-
layout="fit_data_table",
|
| 87 |
-
sizing_mode="fixed",
|
| 88 |
-
align="center",
|
| 89 |
-
show_index=False,
|
| 90 |
-
text_align={"Metric (Per Shift)": "right", "Value": "center"},
|
| 91 |
-
)
|
| 92 |
-
self.profit_weekly = pn.indicators.Number(
|
| 93 |
-
name="Weekly Profit",
|
| 94 |
-
value=0,
|
| 95 |
-
format="$0 k",
|
| 96 |
-
default_color="green",
|
| 97 |
-
align="center",
|
| 98 |
-
)
|
| 99 |
-
self.profit_pct = pn.indicators.Number(
|
| 100 |
-
name="Operating Profit",
|
| 101 |
-
value=0,
|
| 102 |
-
format="0.00%",
|
| 103 |
-
default_color="green",
|
| 104 |
-
align="center",
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
@param.depends("labour_hours_per_shift", watch=True)
|
| 108 |
-
def _update_processing_hours_slider_constraints(self):
|
| 109 |
-
new_max_processing_hours = self.labour_hours_per_shift
|
| 110 |
-
# Ensure min bound is not greater than new max bound
|
| 111 |
-
current_min_processing_hours = min(
|
| 112 |
-
self.param.processing_hours_per_shift.bounds[0], new_max_processing_hours
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
self.param.processing_hours_per_shift.bounds = (
|
| 116 |
-
current_min_processing_hours,
|
| 117 |
-
new_max_processing_hours,
|
| 118 |
-
)
|
| 119 |
-
# Check if processing_hours_per_shift_slider exists before trying to update it
|
| 120 |
-
if hasattr(self, "processing_hours_per_shift_slider"):
|
| 121 |
-
self.processing_hours_per_shift_slider.end = new_max_processing_hours
|
| 122 |
-
if self.processing_hours_per_shift > new_max_processing_hours:
|
| 123 |
-
self.processing_hours_per_shift = new_max_processing_hours
|
| 124 |
-
# Also update start if it's now greater than end
|
| 125 |
-
if self.processing_hours_per_shift_slider.start > new_max_processing_hours:
|
| 126 |
-
self.processing_hours_per_shift_slider.start = (
|
| 127 |
-
current_min_processing_hours # or new_max_processing_hours
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
def _post_calculation_update(self):
|
| 131 |
-
"""Overrides the base class method to update GUI elements."""
|
| 132 |
-
super()._post_calculation_update() # Call base class method if it has any logic
|
| 133 |
-
self._update_tables_data()
|
| 134 |
-
|
| 135 |
-
def _update_tables_data(self):
|
| 136 |
-
metric_names = [
|
| 137 |
-
"Biomass cost",
|
| 138 |
-
"Processing cost",
|
| 139 |
-
"Gross Revenue",
|
| 140 |
-
"Net Revenue",
|
| 141 |
-
]
|
| 142 |
-
money_data_unit_dict = {
|
| 143 |
-
" ": metric_names,
|
| 144 |
-
"$/kg Biomass": [
|
| 145 |
-
self.bio_cost,
|
| 146 |
-
self.internal_cogs_per_kg_bio,
|
| 147 |
-
self.gross_rev_per_kg_bio,
|
| 148 |
-
self.net_rev_per_kg_bio,
|
| 149 |
-
],
|
| 150 |
-
"$/kg Output": [
|
| 151 |
-
self.biomass_cost_per_kg_output,
|
| 152 |
-
self.internal_cogs_per_kg_output,
|
| 153 |
-
self.wholesale_cbx_price,
|
| 154 |
-
self.net_rev_per_kg_output,
|
| 155 |
-
],
|
| 156 |
-
}
|
| 157 |
-
self.money_data_unit_df = pd.DataFrame(money_data_unit_dict)
|
| 158 |
-
if hasattr(self, "money_unit_table"):
|
| 159 |
-
self.money_unit_table.value = self.money_data_unit_df
|
| 160 |
-
|
| 161 |
-
money_data_time_dict = {
|
| 162 |
-
" ": metric_names,
|
| 163 |
-
"Per Shift": [
|
| 164 |
-
self.biomass_cost_per_shift,
|
| 165 |
-
self.internal_cogs_per_shift,
|
| 166 |
-
self.gross_rev_per_shift,
|
| 167 |
-
self.net_rev_per_shift,
|
| 168 |
-
],
|
| 169 |
-
"Per Day": [
|
| 170 |
-
self.biomass_cost_per_day,
|
| 171 |
-
self.internal_cogs_per_day,
|
| 172 |
-
self.gross_rev_per_day,
|
| 173 |
-
self.net_rev_per_day,
|
| 174 |
-
],
|
| 175 |
-
"Per Week": [
|
| 176 |
-
self.biomass_cost_per_week,
|
| 177 |
-
self.internal_cogs_per_week,
|
| 178 |
-
self.gross_rev_per_week,
|
| 179 |
-
self.net_rev_per_week,
|
| 180 |
-
],
|
| 181 |
-
}
|
| 182 |
-
self.money_data_time_df = pd.DataFrame(money_data_time_dict)
|
| 183 |
-
if hasattr(self, "money_time_table"):
|
| 184 |
-
self.money_time_table.value = self.money_data_time_df
|
| 185 |
-
|
| 186 |
-
profit_data_dict = {
|
| 187 |
-
"Metric": ["Operating Profit", "Resin Spread"],
|
| 188 |
-
"Value": [
|
| 189 |
-
f"{self.operating_profit_pct * 100.0:.2f}%",
|
| 190 |
-
f"{self.resin_spread_pct * 100.0:.2f}%",
|
| 191 |
-
],
|
| 192 |
-
}
|
| 193 |
-
self.profit_data_df = pd.DataFrame(profit_data_dict)
|
| 194 |
-
if hasattr(self, "profit_table"):
|
| 195 |
-
self.profit_table.value = self.profit_data_df
|
| 196 |
-
|
| 197 |
-
processing_values_formatted_shift = [
|
| 198 |
-
f"{self.kg_processed_per_shift:,.0f}",
|
| 199 |
-
f"{self.saleable_kg_per_shift:,.0f}",
|
| 200 |
-
f"${self.labour_cost_per_shift:,.2f}",
|
| 201 |
-
f"${self.variable_cost_per_shift:,.2f}",
|
| 202 |
-
f"${self.overhead_cost_per_shift:,.2f}",
|
| 203 |
-
]
|
| 204 |
-
processing_values_formatted_day = [
|
| 205 |
-
f"{self.kg_processed_per_shift * self.shifts_per_day:,.0f}",
|
| 206 |
-
f"{self.saleable_kg_per_day:,.0f}",
|
| 207 |
-
f"${self.labour_cost_per_shift * self.shifts_per_day:,.2f}",
|
| 208 |
-
f"${self.variable_cost_per_shift * self.shifts_per_day:,.2f}",
|
| 209 |
-
f"${self.overhead_cost_per_shift * self.shifts_per_day:,.2f}",
|
| 210 |
-
]
|
| 211 |
-
processing_values_formatted_week = [
|
| 212 |
-
f"{self.kg_processed_per_shift * self.shifts_per_week:,.0f}",
|
| 213 |
-
f"{self.saleable_kg_per_week:,.0f}",
|
| 214 |
-
f"${self.labour_cost_per_shift * self.shifts_per_week:,.2f}",
|
| 215 |
-
f"${self.variable_cost_per_shift * self.shifts_per_week:,.2f}",
|
| 216 |
-
f"${self.overhead_cost_per_shift * self.shifts_per_week:,.2f}",
|
| 217 |
-
]
|
| 218 |
-
processing_data_dict = {
|
| 219 |
-
"Metric Per": [
|
| 220 |
-
"Kilograms Extracted",
|
| 221 |
-
"Kg CBx Produced",
|
| 222 |
-
"Labour Cost",
|
| 223 |
-
"Variable Cost",
|
| 224 |
-
"Overhead",
|
| 225 |
-
],
|
| 226 |
-
"Shift": processing_values_formatted_shift,
|
| 227 |
-
"Day": processing_values_formatted_day,
|
| 228 |
-
"Week": processing_values_formatted_week,
|
| 229 |
-
}
|
| 230 |
-
self.processing_data_df = pd.DataFrame(processing_data_dict)
|
| 231 |
-
if hasattr(self, "processing_table"):
|
| 232 |
-
self.processing_table.value = self.processing_data_df
|
| 233 |
-
|
| 234 |
-
if hasattr(self, "profit_weekly"):
|
| 235 |
-
self.profit_weekly.value = self.net_rev_per_week
|
| 236 |
-
# Ensure format updates if value changes significantly (e.g. from 0 to large number)
|
| 237 |
-
self.profit_weekly.format = (
|
| 238 |
-
f"${self.net_rev_per_week / 1000:.0f} k"
|
| 239 |
-
if self.net_rev_per_week != 0
|
| 240 |
-
else "$0 k"
|
| 241 |
-
)
|
| 242 |
-
|
| 243 |
-
if hasattr(self, "profit_pct"):
|
| 244 |
-
self.profit_pct.value = self.operating_profit_pct
|
| 245 |
-
self.profit_pct.format = f"{self.operating_profit_pct * 100.0:.2f}%"
|
| 246 |
-
|
| 247 |
-
def view(self):
|
| 248 |
-
input_col_max_width = 400
|
| 249 |
-
extractionCol = pn.Column(
|
| 250 |
-
"### Extraction",
|
| 251 |
-
self.param.kg_processed_per_hour,
|
| 252 |
-
self.param.finished_product_yield_pct,
|
| 253 |
-
sizing_mode="stretch_width",
|
| 254 |
-
max_width=input_col_max_width,
|
| 255 |
-
)
|
| 256 |
-
biomassCol = pn.Column(
|
| 257 |
-
pn.pane.Markdown("### Biomass parameters", margin=0),
|
| 258 |
-
self.param.bio_cbx_pct,
|
| 259 |
-
self.param.bio_cost,
|
| 260 |
-
sizing_mode="stretch_width",
|
| 261 |
-
max_width=input_col_max_width,
|
| 262 |
-
)
|
| 263 |
-
consumableCol = pn.Column(
|
| 264 |
-
pn.pane.Markdown("### Consumable rates", margin=0),
|
| 265 |
-
self.param.kwh_rate,
|
| 266 |
-
self.param.water_cost_per_1000l,
|
| 267 |
-
self.param.consumables_per_kg_bio_rate,
|
| 268 |
-
sizing_mode="stretch_width",
|
| 269 |
-
max_width=input_col_max_width,
|
| 270 |
-
)
|
| 271 |
-
wholesaleCol = pn.Column(
|
| 272 |
-
pn.pane.Markdown("### Wholesale details", margin=0),
|
| 273 |
-
self.param.wholesale_cbx_price,
|
| 274 |
-
self.param.wholesale_cbx_pct,
|
| 275 |
-
sizing_mode="stretch_width",
|
| 276 |
-
max_width=input_col_max_width,
|
| 277 |
-
)
|
| 278 |
-
variableCol = pn.Column(
|
| 279 |
-
pn.pane.Markdown("### Variable processing costs", margin=0),
|
| 280 |
-
self.param.kwh_per_kg_bio,
|
| 281 |
-
self.param.water_liters_consumed_per_kg_bio,
|
| 282 |
-
self.param.consumables_per_kg_output,
|
| 283 |
-
sizing_mode="stretch_width",
|
| 284 |
-
max_width=input_col_max_width,
|
| 285 |
-
)
|
| 286 |
-
complianceBatchCol = pn.Column(
|
| 287 |
-
pn.pane.Markdown("### Compliance", margin=0),
|
| 288 |
-
self.param.batch_test_cost,
|
| 289 |
-
pn.pane.Markdown("New Batch Every:", margin=0),
|
| 290 |
-
self.batch_frequency_radio,
|
| 291 |
-
sizing_mode="stretch_width",
|
| 292 |
-
max_width=input_col_max_width,
|
| 293 |
-
)
|
| 294 |
-
leechCol = pn.Column(
|
| 295 |
-
pn.pane.Markdown("### Weekly Rent & Fixed Overheads", margin=0),
|
| 296 |
-
self.param.weekly_rent,
|
| 297 |
-
self.param.non_production_electricity_cost_weekly,
|
| 298 |
-
self.param.property_insurance_weekly,
|
| 299 |
-
self.param.general_liability_insurance_weekly,
|
| 300 |
-
self.param.product_recall_insurance_weekly,
|
| 301 |
-
sizing_mode="stretch_width",
|
| 302 |
-
max_width=input_col_max_width,
|
| 303 |
-
)
|
| 304 |
-
workerCol = pn.Column(
|
| 305 |
-
pn.pane.Markdown("### Worker Details", margin=0),
|
| 306 |
-
self.param.workers_per_shift,
|
| 307 |
-
self.param.worker_base_pay_rate,
|
| 308 |
-
self.param.managers_per_shift,
|
| 309 |
-
self.param.manager_base_pay_rate,
|
| 310 |
-
self.param.direct_cost_pct,
|
| 311 |
-
sizing_mode="stretch_width",
|
| 312 |
-
max_width=input_col_max_width,
|
| 313 |
-
)
|
| 314 |
-
shiftCol = pn.Column(
|
| 315 |
-
pn.pane.Markdown("### Shift details", margin=0),
|
| 316 |
-
self.param.labour_hours_per_shift,
|
| 317 |
-
self.param.processing_hours_per_shift,
|
| 318 |
-
self.param.shifts_per_day,
|
| 319 |
-
self.param.shifts_per_week,
|
| 320 |
-
sizing_mode="stretch_width",
|
| 321 |
-
max_width=input_col_max_width,
|
| 322 |
-
)
|
| 323 |
-
|
| 324 |
-
input_grid = pn.FlexBox(
|
| 325 |
-
extractionCol,
|
| 326 |
-
biomassCol,
|
| 327 |
-
consumableCol,
|
| 328 |
-
wholesaleCol,
|
| 329 |
-
variableCol,
|
| 330 |
-
complianceBatchCol,
|
| 331 |
-
workerCol,
|
| 332 |
-
shiftCol,
|
| 333 |
-
|
| 334 |
-
leechCol,
|
| 335 |
-
align_content="flex-start",
|
| 336 |
-
align_items="flex-start",
|
| 337 |
-
# valid options include: '[stretch, flex-start, flex-end, center, baseline, first baseline, last baseline, start, end, self-start, self-end]'
|
| 338 |
-
flex_wrap="wrap",
|
| 339 |
-
) # Added flex_wrap
|
| 340 |
-
|
| 341 |
-
money_unit_table_display = pn.Column(
|
| 342 |
-
pn.pane.Markdown(
|
| 343 |
-
"### Financial Summary (Per Unit)", styles={"text-align": "center"}
|
| 344 |
-
),
|
| 345 |
-
self.money_unit_table,
|
| 346 |
-
sizing_mode="stretch_width",
|
| 347 |
-
max_width=input_col_max_width + 50,
|
| 348 |
-
)
|
| 349 |
-
money_time_table_display = pn.Column(
|
| 350 |
-
pn.pane.Markdown(
|
| 351 |
-
"### Financial Summary (Aggregated)", styles={"text-align": "center"}
|
| 352 |
-
),
|
| 353 |
-
self.money_time_table,
|
| 354 |
-
sizing_mode="stretch_width",
|
| 355 |
-
max_width=500,
|
| 356 |
-
)
|
| 357 |
-
profit_table_display = pn.Column(
|
| 358 |
-
pn.pane.Markdown("### Profitability", styles={"text-align": "center"}),
|
| 359 |
-
self.profit_table,
|
| 360 |
-
sizing_mode="stretch_width",
|
| 361 |
-
max_width=input_col_max_width,
|
| 362 |
-
)
|
| 363 |
-
processing_table_display = pn.Column(
|
| 364 |
-
pn.pane.Markdown("### Processing Summary", styles={"text-align": "center"}),
|
| 365 |
-
self.processing_table,
|
| 366 |
-
sizing_mode="stretch_width",
|
| 367 |
-
max_width=input_col_max_width,
|
| 368 |
-
)
|
| 369 |
-
|
| 370 |
-
table_grid = pn.FlexBox(
|
| 371 |
-
self.profit_weekly,
|
| 372 |
-
self.profit_pct,
|
| 373 |
-
processing_table_display,
|
| 374 |
-
profit_table_display,
|
| 375 |
-
money_unit_table_display,
|
| 376 |
-
money_time_table_display,
|
| 377 |
-
align_content="normal",
|
| 378 |
-
flex_wrap="wrap",
|
| 379 |
-
)
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
| 386 |
return main_layout
|
|
|
|
| 1 |
+
import panel as pn
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import param
|
| 4 |
+
from bokeh.models.formatters import PrintfTickFormatter
|
| 5 |
+
|
| 6 |
+
from calculations import CannabinoidCalculations
|
| 7 |
+
from config import slider_design, slider_style, slider_stylesheet, get_formatter
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class CannabinoidEstimatorGUI(CannabinoidCalculations):
|
| 11 |
+
# DataFrame params for tables
|
| 12 |
+
money_data_unit_df = param.DataFrame(
|
| 13 |
+
pd.DataFrame(),
|
| 14 |
+
precedence=-1, # precedence to hide from param pane if shown
|
| 15 |
+
)
|
| 16 |
+
money_data_time_df = param.DataFrame(pd.DataFrame(), precedence=-1)
|
| 17 |
+
profit_data_df = param.DataFrame(pd.DataFrame(), precedence=-1)
|
| 18 |
+
processing_data_df = param.DataFrame(pd.DataFrame(), precedence=-1)
|
| 19 |
+
|
| 20 |
+
def __init__(self, **params):
|
| 21 |
+
super().__init__(**params)
|
| 22 |
+
self._create_sliders()
|
| 23 |
+
self._create_tables_and_indicators()
|
| 24 |
+
self._update_calculations() # Initial calculation and table update
|
| 25 |
+
|
| 26 |
+
def _create_sliders(self):
|
| 27 |
+
self.batch_frequency_radio = pn.widgets.RadioButtonGroup.from_param(
|
| 28 |
+
self.param.batch_frequency,
|
| 29 |
+
name=self.param.batch_frequency.label,
|
| 30 |
+
options=["Shift", "Day", "Week"],
|
| 31 |
+
button_type="primary",
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def _create_tables_and_indicators(self):
|
| 35 |
+
# Table for $/kg Biomass and $/kg Output
|
| 36 |
+
self.money_unit_table = pn.widgets.Tabulator(
|
| 37 |
+
self.money_data_unit_df, # Initial empty or pre-filled df
|
| 38 |
+
formatters={
|
| 39 |
+
"$/kg Biomass": get_formatter("$%.02f"),
|
| 40 |
+
"$/kg Output": get_formatter("$%.02f"),
|
| 41 |
+
},
|
| 42 |
+
disabled=True,
|
| 43 |
+
layout="fit_data",
|
| 44 |
+
sizing_mode="fixed",
|
| 45 |
+
align="center",
|
| 46 |
+
show_index=False,
|
| 47 |
+
text_align={
|
| 48 |
+
" ": "right",
|
| 49 |
+
"$/kg Biomass": "center",
|
| 50 |
+
"$/kg Output": "center",
|
| 51 |
+
},
|
| 52 |
+
)
|
| 53 |
+
# Table for Per Shift, Per Day, Per Week
|
| 54 |
+
self.money_time_table = pn.widgets.Tabulator(
|
| 55 |
+
self.money_data_time_df, # Initial empty or pre-filled df
|
| 56 |
+
formatters={
|
| 57 |
+
"Per Shift": get_formatter("$%.02f"),
|
| 58 |
+
"Per Day": get_formatter("$%.02f"),
|
| 59 |
+
"Per Week": get_formatter("$%.02f"),
|
| 60 |
+
},
|
| 61 |
+
disabled=True,
|
| 62 |
+
layout="fit_data",
|
| 63 |
+
sizing_mode="fixed",
|
| 64 |
+
align="center",
|
| 65 |
+
show_index=False,
|
| 66 |
+
text_align={
|
| 67 |
+
" ": "right",
|
| 68 |
+
"Per Shift": "center",
|
| 69 |
+
"Per Day": "center",
|
| 70 |
+
"Per Week": "center",
|
| 71 |
+
},
|
| 72 |
+
)
|
| 73 |
+
self.profit_table = pn.widgets.Tabulator(
|
| 74 |
+
self.profit_data_df, # Initial empty or pre-filled df
|
| 75 |
+
disabled=True,
|
| 76 |
+
layout="fit_data_table",
|
| 77 |
+
sizing_mode="fixed",
|
| 78 |
+
align="center",
|
| 79 |
+
show_index=False,
|
| 80 |
+
text_align={"Metric": "right", "Value": "center"},
|
| 81 |
+
)
|
| 82 |
+
self.processing_table = pn.widgets.Tabulator(
|
| 83 |
+
self.processing_data_df, # Initial empty or pre-filled df
|
| 84 |
+
formatters={},
|
| 85 |
+
disabled=True,
|
| 86 |
+
layout="fit_data_table",
|
| 87 |
+
sizing_mode="fixed",
|
| 88 |
+
align="center",
|
| 89 |
+
show_index=False,
|
| 90 |
+
text_align={"Metric (Per Shift)": "right", "Value": "center"},
|
| 91 |
+
)
|
| 92 |
+
self.profit_weekly = pn.indicators.Number(
|
| 93 |
+
name="Weekly Profit",
|
| 94 |
+
value=0,
|
| 95 |
+
format="$0 k",
|
| 96 |
+
default_color="green",
|
| 97 |
+
align="center",
|
| 98 |
+
)
|
| 99 |
+
self.profit_pct = pn.indicators.Number(
|
| 100 |
+
name="Operating Profit",
|
| 101 |
+
value=0,
|
| 102 |
+
format="0.00%",
|
| 103 |
+
default_color="green",
|
| 104 |
+
align="center",
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
@param.depends("labour_hours_per_shift", watch=True)
|
| 108 |
+
def _update_processing_hours_slider_constraints(self):
|
| 109 |
+
new_max_processing_hours = self.labour_hours_per_shift
|
| 110 |
+
# Ensure min bound is not greater than new max bound
|
| 111 |
+
current_min_processing_hours = min(
|
| 112 |
+
self.param.processing_hours_per_shift.bounds[0], new_max_processing_hours
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
self.param.processing_hours_per_shift.bounds = (
|
| 116 |
+
current_min_processing_hours,
|
| 117 |
+
new_max_processing_hours,
|
| 118 |
+
)
|
| 119 |
+
# Check if processing_hours_per_shift_slider exists before trying to update it
|
| 120 |
+
if hasattr(self, "processing_hours_per_shift_slider"):
|
| 121 |
+
self.processing_hours_per_shift_slider.end = new_max_processing_hours
|
| 122 |
+
if self.processing_hours_per_shift > new_max_processing_hours:
|
| 123 |
+
self.processing_hours_per_shift = new_max_processing_hours
|
| 124 |
+
# Also update start if it's now greater than end
|
| 125 |
+
if self.processing_hours_per_shift_slider.start > new_max_processing_hours:
|
| 126 |
+
self.processing_hours_per_shift_slider.start = (
|
| 127 |
+
current_min_processing_hours # or new_max_processing_hours
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
def _post_calculation_update(self):
|
| 131 |
+
"""Overrides the base class method to update GUI elements."""
|
| 132 |
+
super()._post_calculation_update() # Call base class method if it has any logic
|
| 133 |
+
self._update_tables_data()
|
| 134 |
+
|
| 135 |
+
def _update_tables_data(self):
|
| 136 |
+
metric_names = [
|
| 137 |
+
"Biomass cost",
|
| 138 |
+
"Processing cost",
|
| 139 |
+
"Gross Revenue",
|
| 140 |
+
"Net Revenue",
|
| 141 |
+
]
|
| 142 |
+
money_data_unit_dict = {
|
| 143 |
+
" ": metric_names,
|
| 144 |
+
"$/kg Biomass": [
|
| 145 |
+
self.bio_cost,
|
| 146 |
+
self.internal_cogs_per_kg_bio,
|
| 147 |
+
self.gross_rev_per_kg_bio,
|
| 148 |
+
self.net_rev_per_kg_bio,
|
| 149 |
+
],
|
| 150 |
+
"$/kg Output": [
|
| 151 |
+
self.biomass_cost_per_kg_output,
|
| 152 |
+
self.internal_cogs_per_kg_output,
|
| 153 |
+
self.wholesale_cbx_price,
|
| 154 |
+
self.net_rev_per_kg_output,
|
| 155 |
+
],
|
| 156 |
+
}
|
| 157 |
+
self.money_data_unit_df = pd.DataFrame(money_data_unit_dict)
|
| 158 |
+
if hasattr(self, "money_unit_table"):
|
| 159 |
+
self.money_unit_table.value = self.money_data_unit_df
|
| 160 |
+
|
| 161 |
+
money_data_time_dict = {
|
| 162 |
+
" ": metric_names,
|
| 163 |
+
"Per Shift": [
|
| 164 |
+
self.biomass_cost_per_shift,
|
| 165 |
+
self.internal_cogs_per_shift,
|
| 166 |
+
self.gross_rev_per_shift,
|
| 167 |
+
self.net_rev_per_shift,
|
| 168 |
+
],
|
| 169 |
+
"Per Day": [
|
| 170 |
+
self.biomass_cost_per_day,
|
| 171 |
+
self.internal_cogs_per_day,
|
| 172 |
+
self.gross_rev_per_day,
|
| 173 |
+
self.net_rev_per_day,
|
| 174 |
+
],
|
| 175 |
+
"Per Week": [
|
| 176 |
+
self.biomass_cost_per_week,
|
| 177 |
+
self.internal_cogs_per_week,
|
| 178 |
+
self.gross_rev_per_week,
|
| 179 |
+
self.net_rev_per_week,
|
| 180 |
+
],
|
| 181 |
+
}
|
| 182 |
+
self.money_data_time_df = pd.DataFrame(money_data_time_dict)
|
| 183 |
+
if hasattr(self, "money_time_table"):
|
| 184 |
+
self.money_time_table.value = self.money_data_time_df
|
| 185 |
+
|
| 186 |
+
profit_data_dict = {
|
| 187 |
+
"Metric": ["Operating Profit", "Resin Spread"],
|
| 188 |
+
"Value": [
|
| 189 |
+
f"{self.operating_profit_pct * 100.0:.2f}%",
|
| 190 |
+
f"{self.resin_spread_pct * 100.0:.2f}%",
|
| 191 |
+
],
|
| 192 |
+
}
|
| 193 |
+
self.profit_data_df = pd.DataFrame(profit_data_dict)
|
| 194 |
+
if hasattr(self, "profit_table"):
|
| 195 |
+
self.profit_table.value = self.profit_data_df
|
| 196 |
+
|
| 197 |
+
processing_values_formatted_shift = [
|
| 198 |
+
f"{self.kg_processed_per_shift:,.0f}",
|
| 199 |
+
f"{self.saleable_kg_per_shift:,.0f}",
|
| 200 |
+
f"${self.labour_cost_per_shift:,.2f}",
|
| 201 |
+
f"${self.variable_cost_per_shift:,.2f}",
|
| 202 |
+
f"${self.overhead_cost_per_shift:,.2f}",
|
| 203 |
+
]
|
| 204 |
+
processing_values_formatted_day = [
|
| 205 |
+
f"{self.kg_processed_per_shift * self.shifts_per_day:,.0f}",
|
| 206 |
+
f"{self.saleable_kg_per_day:,.0f}",
|
| 207 |
+
f"${self.labour_cost_per_shift * self.shifts_per_day:,.2f}",
|
| 208 |
+
f"${self.variable_cost_per_shift * self.shifts_per_day:,.2f}",
|
| 209 |
+
f"${self.overhead_cost_per_shift * self.shifts_per_day:,.2f}",
|
| 210 |
+
]
|
| 211 |
+
processing_values_formatted_week = [
|
| 212 |
+
f"{self.kg_processed_per_shift * self.shifts_per_week:,.0f}",
|
| 213 |
+
f"{self.saleable_kg_per_week:,.0f}",
|
| 214 |
+
f"${self.labour_cost_per_shift * self.shifts_per_week:,.2f}",
|
| 215 |
+
f"${self.variable_cost_per_shift * self.shifts_per_week:,.2f}",
|
| 216 |
+
f"${self.overhead_cost_per_shift * self.shifts_per_week:,.2f}",
|
| 217 |
+
]
|
| 218 |
+
processing_data_dict = {
|
| 219 |
+
"Metric Per": [
|
| 220 |
+
"Kilograms Extracted",
|
| 221 |
+
"Kg CBx Produced",
|
| 222 |
+
"Labour Cost",
|
| 223 |
+
"Variable Cost",
|
| 224 |
+
"Overhead",
|
| 225 |
+
],
|
| 226 |
+
"Shift": processing_values_formatted_shift,
|
| 227 |
+
"Day": processing_values_formatted_day,
|
| 228 |
+
"Week": processing_values_formatted_week,
|
| 229 |
+
}
|
| 230 |
+
self.processing_data_df = pd.DataFrame(processing_data_dict)
|
| 231 |
+
if hasattr(self, "processing_table"):
|
| 232 |
+
self.processing_table.value = self.processing_data_df
|
| 233 |
+
|
| 234 |
+
if hasattr(self, "profit_weekly"):
|
| 235 |
+
self.profit_weekly.value = self.net_rev_per_week
|
| 236 |
+
# Ensure format updates if value changes significantly (e.g. from 0 to large number)
|
| 237 |
+
self.profit_weekly.format = (
|
| 238 |
+
f"${self.net_rev_per_week / 1000:.0f} k"
|
| 239 |
+
if self.net_rev_per_week != 0
|
| 240 |
+
else "$0 k"
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
if hasattr(self, "profit_pct"):
|
| 244 |
+
self.profit_pct.value = self.operating_profit_pct
|
| 245 |
+
self.profit_pct.format = f"{self.operating_profit_pct * 100.0:.2f}%"
|
| 246 |
+
|
| 247 |
+
def view(self):
|
| 248 |
+
input_col_max_width = 400
|
| 249 |
+
extractionCol = pn.Column(
|
| 250 |
+
"### Extraction",
|
| 251 |
+
self.param.kg_processed_per_hour,
|
| 252 |
+
self.param.finished_product_yield_pct,
|
| 253 |
+
sizing_mode="stretch_width",
|
| 254 |
+
max_width=input_col_max_width,
|
| 255 |
+
)
|
| 256 |
+
biomassCol = pn.Column(
|
| 257 |
+
pn.pane.Markdown("### Biomass parameters", margin=0),
|
| 258 |
+
self.param.bio_cbx_pct,
|
| 259 |
+
self.param.bio_cost,
|
| 260 |
+
sizing_mode="stretch_width",
|
| 261 |
+
max_width=input_col_max_width,
|
| 262 |
+
)
|
| 263 |
+
consumableCol = pn.Column(
|
| 264 |
+
pn.pane.Markdown("### Consumable rates", margin=0),
|
| 265 |
+
self.param.kwh_rate,
|
| 266 |
+
self.param.water_cost_per_1000l,
|
| 267 |
+
self.param.consumables_per_kg_bio_rate,
|
| 268 |
+
sizing_mode="stretch_width",
|
| 269 |
+
max_width=input_col_max_width,
|
| 270 |
+
)
|
| 271 |
+
wholesaleCol = pn.Column(
|
| 272 |
+
pn.pane.Markdown("### Wholesale details", margin=0),
|
| 273 |
+
self.param.wholesale_cbx_price,
|
| 274 |
+
self.param.wholesale_cbx_pct,
|
| 275 |
+
sizing_mode="stretch_width",
|
| 276 |
+
max_width=input_col_max_width,
|
| 277 |
+
)
|
| 278 |
+
variableCol = pn.Column(
|
| 279 |
+
pn.pane.Markdown("### Variable processing costs", margin=0),
|
| 280 |
+
self.param.kwh_per_kg_bio,
|
| 281 |
+
self.param.water_liters_consumed_per_kg_bio,
|
| 282 |
+
self.param.consumables_per_kg_output,
|
| 283 |
+
sizing_mode="stretch_width",
|
| 284 |
+
max_width=input_col_max_width,
|
| 285 |
+
)
|
| 286 |
+
complianceBatchCol = pn.Column(
|
| 287 |
+
pn.pane.Markdown("### Compliance", margin=0),
|
| 288 |
+
self.param.batch_test_cost,
|
| 289 |
+
pn.pane.Markdown("New Batch Every:", margin=0),
|
| 290 |
+
self.batch_frequency_radio,
|
| 291 |
+
sizing_mode="stretch_width",
|
| 292 |
+
max_width=input_col_max_width,
|
| 293 |
+
)
|
| 294 |
+
leechCol = pn.Column(
|
| 295 |
+
pn.pane.Markdown("### Weekly Rent & Fixed Overheads", margin=0),
|
| 296 |
+
self.param.weekly_rent,
|
| 297 |
+
self.param.non_production_electricity_cost_weekly,
|
| 298 |
+
self.param.property_insurance_weekly,
|
| 299 |
+
self.param.general_liability_insurance_weekly,
|
| 300 |
+
self.param.product_recall_insurance_weekly,
|
| 301 |
+
sizing_mode="stretch_width",
|
| 302 |
+
max_width=input_col_max_width,
|
| 303 |
+
)
|
| 304 |
+
workerCol = pn.Column(
|
| 305 |
+
pn.pane.Markdown("### Worker Details", margin=0),
|
| 306 |
+
self.param.workers_per_shift,
|
| 307 |
+
self.param.worker_base_pay_rate,
|
| 308 |
+
self.param.managers_per_shift,
|
| 309 |
+
self.param.manager_base_pay_rate,
|
| 310 |
+
self.param.direct_cost_pct,
|
| 311 |
+
sizing_mode="stretch_width",
|
| 312 |
+
max_width=input_col_max_width,
|
| 313 |
+
)
|
| 314 |
+
shiftCol = pn.Column(
|
| 315 |
+
pn.pane.Markdown("### Shift details", margin=0),
|
| 316 |
+
self.param.labour_hours_per_shift,
|
| 317 |
+
self.param.processing_hours_per_shift,
|
| 318 |
+
self.param.shifts_per_day,
|
| 319 |
+
self.param.shifts_per_week,
|
| 320 |
+
sizing_mode="stretch_width",
|
| 321 |
+
max_width=input_col_max_width,
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
input_grid = pn.FlexBox(
|
| 325 |
+
extractionCol,
|
| 326 |
+
biomassCol,
|
| 327 |
+
consumableCol,
|
| 328 |
+
wholesaleCol,
|
| 329 |
+
variableCol,
|
| 330 |
+
complianceBatchCol,
|
| 331 |
+
workerCol,
|
| 332 |
+
shiftCol,
|
| 333 |
+
|
| 334 |
+
leechCol,
|
| 335 |
+
align_content="flex-start",
|
| 336 |
+
align_items="flex-start",
|
| 337 |
+
# valid options include: '[stretch, flex-start, flex-end, center, baseline, first baseline, last baseline, start, end, self-start, self-end]'
|
| 338 |
+
flex_wrap="wrap",
|
| 339 |
+
) # Added flex_wrap
|
| 340 |
+
|
| 341 |
+
money_unit_table_display = pn.Column(
|
| 342 |
+
pn.pane.Markdown(
|
| 343 |
+
"### Financial Summary (Per Unit)", styles={"text-align": "center"}
|
| 344 |
+
),
|
| 345 |
+
self.money_unit_table,
|
| 346 |
+
sizing_mode="stretch_width",
|
| 347 |
+
max_width=input_col_max_width + 50,
|
| 348 |
+
)
|
| 349 |
+
money_time_table_display = pn.Column(
|
| 350 |
+
pn.pane.Markdown(
|
| 351 |
+
"### Financial Summary (Aggregated)", styles={"text-align": "center"}
|
| 352 |
+
),
|
| 353 |
+
self.money_time_table,
|
| 354 |
+
sizing_mode="stretch_width",
|
| 355 |
+
max_width=500,
|
| 356 |
+
)
|
| 357 |
+
profit_table_display = pn.Column(
|
| 358 |
+
pn.pane.Markdown("### Profitability", styles={"text-align": "center"}),
|
| 359 |
+
self.profit_table,
|
| 360 |
+
sizing_mode="stretch_width",
|
| 361 |
+
max_width=input_col_max_width,
|
| 362 |
+
)
|
| 363 |
+
processing_table_display = pn.Column(
|
| 364 |
+
pn.pane.Markdown("### Processing Summary", styles={"text-align": "center"}),
|
| 365 |
+
self.processing_table,
|
| 366 |
+
sizing_mode="stretch_width",
|
| 367 |
+
max_width=input_col_max_width,
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
table_grid = pn.FlexBox(
|
| 371 |
+
self.profit_weekly,
|
| 372 |
+
self.profit_pct,
|
| 373 |
+
processing_table_display,
|
| 374 |
+
profit_table_display,
|
| 375 |
+
money_unit_table_display,
|
| 376 |
+
money_time_table_display,
|
| 377 |
+
align_content="normal",
|
| 378 |
+
flex_wrap="wrap",
|
| 379 |
+
)
|
| 380 |
+
knobs = pn.Accordion(("Knobs & Dials",input_grid))
|
| 381 |
+
knobs.active = [0]
|
| 382 |
+
main_layout = pn.Column(
|
| 383 |
+
knobs,
|
| 384 |
+
pn.layout.Divider(margin=(10, 0)),
|
| 385 |
+
table_grid,
|
| 386 |
+
styles={"margin": "0px 10px"},
|
| 387 |
+
)
|
| 388 |
return main_layout
|