Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
try:
|
| 6 |
+
router = pipeline(
|
| 7 |
+
"text-classification",
|
| 8 |
+
model="AmirMohseni/reasoning-router-0.6b",
|
| 9 |
+
device_map="auto",
|
| 10 |
+
torch_dtype=torch.bfloat16
|
| 11 |
+
)
|
| 12 |
+
except Exception as e:
|
| 13 |
+
print(f"Error loading model: {e}")
|
| 14 |
+
# Fallback to CPU if specific GPU setup fails
|
| 15 |
+
router = pipeline(
|
| 16 |
+
"text-classification",
|
| 17 |
+
model="AmirMohseni/reasoning-router-0.6b",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# --- 2. Define the classification function ---
|
| 22 |
+
def classify_prompt(prompt: str) -> dict:
|
| 23 |
+
"""
|
| 24 |
+
Classifies the user prompt into 'think' or 'no_think' and returns a dictionary
|
| 25 |
+
formatted for Gradio's Label component.
|
| 26 |
+
"""
|
| 27 |
+
if not prompt or not isinstance(prompt, str) or len(prompt.strip()) == 0:
|
| 28 |
+
return {} # Return empty dict for invalid input
|
| 29 |
+
|
| 30 |
+
# Run inference
|
| 31 |
+
results = router(prompt, top_k=None) # Get scores for both labels
|
| 32 |
+
|
| 33 |
+
# Format for Gradio Label output
|
| 34 |
+
output_dict = {item['label']: item['score'] for item in results}
|
| 35 |
+
return output_dict
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# --- 3. Build the Gradio Interface ---
|
| 39 |
+
with gr.Blocks(theme='soft', title="Reasoning Router") as demo:
|
| 40 |
+
# Header
|
| 41 |
+
gr.Markdown(
|
| 42 |
+
"""
|
| 43 |
+
# 🧠 Reasoning Router 0.6B
|
| 44 |
+
This is a demo for the `AmirMohseni/reasoning-router-0.6b` model.
|
| 45 |
+
It classifies user prompts into two categories:
|
| 46 |
+
- **think** → The task requires complex reasoning (e.g., math, multi-step analysis).
|
| 47 |
+
- **no_think** → The task is simple and can be handled by a lightweight model.
|
| 48 |
+
|
| 49 |
+
Enter a prompt below to see how the model classifies it. This is useful for building efficient, hybrid model systems.
|
| 50 |
+
"""
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Main interface
|
| 54 |
+
with gr.Row():
|
| 55 |
+
prompt_input = gr.Textbox(
|
| 56 |
+
label="Enter Prompt",
|
| 57 |
+
placeholder="e.g., If a train travels at 60 mph, how long does it take to cover 180 miles?",
|
| 58 |
+
lines=3
|
| 59 |
+
)
|
| 60 |
+
classification_output = gr.Label(label="Classification Result", num_top_classes=2)
|
| 61 |
+
|
| 62 |
+
classify_button = gr.Button("Classify", variant="primary")
|
| 63 |
+
classify_button.click(
|
| 64 |
+
fn=classify_prompt,
|
| 65 |
+
inputs=prompt_input,
|
| 66 |
+
outputs=classification_output
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Example prompts
|
| 70 |
+
gr.Examples(
|
| 71 |
+
[
|
| 72 |
+
"What is the sum of the first 100 prime numbers?",
|
| 73 |
+
"What is the capital of France?",
|
| 74 |
+
"Solve for x in the equation 3x - 10 = 2.",
|
| 75 |
+
"Can you write me a short poem about the moon?",
|
| 76 |
+
"Explain the theory of relativity in simple terms.",
|
| 77 |
+
"List the ingredients for a chocolate cake."
|
| 78 |
+
],
|
| 79 |
+
inputs=prompt_input,
|
| 80 |
+
outputs=classification_output,
|
| 81 |
+
fn=classify_prompt,
|
| 82 |
+
cache_examples=True
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Launch the app
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
demo.launch()
|