Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import pickle
|
| 4 |
+
from PyPDF2 import PdfReader
|
| 5 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 8 |
+
from langchain.vectorstores import FAISS
|
| 9 |
+
from langchain.llms import OpenAI
|
| 10 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 11 |
+
from langchain.callbacks import get_openai_callback
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
# Sidebar contents
|
| 15 |
+
with st.sidebar:
|
| 16 |
+
st.title(':orange[BinDoc GmbH]')
|
| 17 |
+
st.markdown(
|
| 18 |
+
"Experience the future of document interaction with the revolutionary"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
st.markdown("**BinDocs Chat App**.")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
st.markdown("Harnessing the power of a Large Language Model and AI technology,")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
st.markdown("this innovative platform redefines PDF engagement,")
|
| 29 |
+
|
| 30 |
+
st.markdown("enabling dynamic conversations that bridge the gap between")
|
| 31 |
+
st.markdown("human and machine intelligence.")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
add_vertical_space(3) # Add more vertical space between text blocks
|
| 36 |
+
st.write('Made with ❤️ by Anne')
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
openai_api_key = st.text_input("Enter your OpenAI API key:")
|
| 40 |
+
pdf_path = ""
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def load_pdf(file_path):
|
| 44 |
+
pdf_reader = PdfReader(file_path)
|
| 45 |
+
text = ""
|
| 46 |
+
for page in pdf_reader.pages:
|
| 47 |
+
text += page.extract_text()
|
| 48 |
+
|
| 49 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 50 |
+
chunk_size=1000,
|
| 51 |
+
chunk_overlap=200,
|
| 52 |
+
length_function=len
|
| 53 |
+
)
|
| 54 |
+
chunks = text_splitter.split_text(text=text)
|
| 55 |
+
|
| 56 |
+
store_name, _ = os.path.splitext(os.path.basename(file_path))
|
| 57 |
+
|
| 58 |
+
if os.path.exists(f"{store_name}.pkl"):
|
| 59 |
+
with open(f"{store_name}.pkl", "rb") as f:
|
| 60 |
+
VectorStore = pickle.load(f)
|
| 61 |
+
else:
|
| 62 |
+
embeddings = OpenAIEmbeddings()
|
| 63 |
+
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
| 64 |
+
with open(f"{store_name}.pkl", "wb") as f:
|
| 65 |
+
pickle.dump(VectorStore, f)
|
| 66 |
+
|
| 67 |
+
return VectorStore
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def load_chatbot(openai_api_key):
|
| 72 |
+
openai_config = {
|
| 73 |
+
"api_key": openai_api_key
|
| 74 |
+
}
|
| 75 |
+
return load_qa_chain(llm=OpenAI(config=openai_config), chain_type="stuff")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def main():
|
| 79 |
+
st.title("BinDocs Chat App")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
uploaded_pdf = st.file_uploader("Upload a PDF file:", type=["pdf"])
|
| 83 |
+
|
| 84 |
+
if uploaded_pdf is not None:
|
| 85 |
+
pdf_path = uploaded_pdf
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
if "chat_history" not in st.session_state:
|
| 89 |
+
st.session_state['chat_history'] = []
|
| 90 |
+
|
| 91 |
+
display_chat_history(st.session_state['chat_history'])
|
| 92 |
+
|
| 93 |
+
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
| 94 |
+
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
| 95 |
+
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
| 96 |
+
|
| 97 |
+
new_messages_placeholder = st.empty()
|
| 98 |
+
|
| 99 |
+
if pdf_path is not None:
|
| 100 |
+
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
|
| 101 |
+
|
| 102 |
+
if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]):
|
| 103 |
+
st.session_state['chat_history'].append(("User", query, "new"))
|
| 104 |
+
|
| 105 |
+
loading_message = st.empty()
|
| 106 |
+
loading_message.text('Bot is thinking...')
|
| 107 |
+
|
| 108 |
+
VectorStore = load_pdf(pdf_path)
|
| 109 |
+
chain = load_chatbot()
|
| 110 |
+
docs = VectorStore.similarity_search(query=query, k=3)
|
| 111 |
+
with get_openai_callback() as cb:
|
| 112 |
+
response = chain.run(input_documents=docs, question=query)
|
| 113 |
+
|
| 114 |
+
st.session_state['chat_history'].append(("Bot", response, "new"))
|
| 115 |
+
|
| 116 |
+
# Display new messages at the bottom
|
| 117 |
+
new_messages = st.session_state['chat_history'][-2:]
|
| 118 |
+
for chat in new_messages:
|
| 119 |
+
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
| 120 |
+
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
| 121 |
+
|
| 122 |
+
# Scroll to the latest response using JavaScript
|
| 123 |
+
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
|
| 124 |
+
|
| 125 |
+
loading_message.empty()
|
| 126 |
+
|
| 127 |
+
# Clear the input field by setting the query variable to an empty string
|
| 128 |
+
query = ""
|
| 129 |
+
|
| 130 |
+
# Mark all messages as old after displaying
|
| 131 |
+
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def display_chat_history(chat_history):
|
| 136 |
+
for chat in chat_history:
|
| 137 |
+
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
| 138 |
+
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
| 139 |
+
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
main()
|
| 142 |
+
|