Spaces:
Runtime error
Runtime error
| import os | |
| import subprocess | |
| import signal | |
| import tempfile | |
| from pathlib import Path | |
| import logging | |
| import gradio as gr | |
| from huggingface_hub import HfApi, ModelCard, whoami | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from datetime import datetime | |
| import numpy as np | |
| import shutil | |
| from copy import deepcopy | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" | |
| log_dir = "/data/logs" | |
| downloads_dir = "/data/downloads" | |
| outputs_dir = "/data/outputs" | |
| os.makedirs(log_dir, exist_ok=True) | |
| logging.basicConfig( | |
| filename=os.path.join(log_dir, "app.log"), | |
| level=logging.INFO, | |
| format="%(asctime)s - %(levelname)s - %(message)s", | |
| ) | |
| logger = logging.getLogger(__name__) | |
| def get_llama_cpp_version(): | |
| try: | |
| result = subprocess.run( | |
| ["git", "-C", "./llama.cpp", "describe", "--tags", "--always"], | |
| stdout=subprocess.PIPE, | |
| stderr=subprocess.PIPE, | |
| check=True, | |
| text=True, | |
| ) | |
| version = result.stdout.strip().split("-")[0] | |
| return version | |
| except subprocess.CalledProcessError as e: | |
| logger.error("Error getting llama.cpp version: %s", e.stderr.strip()) | |
| return None | |
| def get_repo_namespace(repo_owner: str, username: str, user_orgs: list) -> str: | |
| if repo_owner == "self": | |
| return username | |
| for org in user_orgs: | |
| if org["name"] == repo_owner: | |
| return org["name"] | |
| raise ValueError(f"Invalid repo_owner: {repo_owner}") | |
| def escape(s: str) -> str: | |
| return ( | |
| s.replace("&", "&") | |
| .replace("<", "<") | |
| .replace(">", ">") | |
| .replace('"', """) | |
| .replace("\n", "<br/>") | |
| ) | |
| def toggle_repo_owner(export_to_org: bool, oauth_token: gr.OAuthToken | None) -> tuple: | |
| if oauth_token is None or oauth_token.token is None: | |
| raise gr.Error("You must be logged in to use quantize-my-repo") | |
| if not export_to_org: | |
| return gr.update(visible=False, choices=["self"], value="self"), gr.update( | |
| visible=False, value="" | |
| ) | |
| info = whoami(oauth_token.token) | |
| orgs = [org["name"] for org in info.get("orgs", [])] | |
| return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update( | |
| visible=True | |
| ) | |
| def generate_importance_matrix( | |
| model_path: str, train_data_path: str, output_path: str | |
| ) -> None: | |
| imatrix_command = [ | |
| "./llama.cpp/llama-imatrix", | |
| "-m", | |
| model_path, | |
| "-f", | |
| train_data_path, | |
| "-ngl", | |
| "99", | |
| "--output-frequency", | |
| "10", | |
| "-o", | |
| output_path, | |
| ] | |
| if not os.path.isfile(model_path): | |
| raise FileNotFoundError(f"Model file not found: {model_path}") | |
| logger.info("Running imatrix command...") | |
| process = subprocess.Popen(imatrix_command, shell=False) | |
| try: | |
| process.wait(timeout=60) | |
| except subprocess.TimeoutExpired: | |
| logger.warning( | |
| "Imatrix computation timed out. Sending SIGINT to allow graceful termination..." | |
| ) | |
| process.send_signal(signal.SIGINT) | |
| try: | |
| process.wait(timeout=5) | |
| except subprocess.TimeoutExpired: | |
| logger.error( | |
| "Imatrix proc still didn't term. Forecfully terming process..." | |
| ) | |
| process.kill() | |
| logger.info("Importance matrix generation completed.") | |
| def split_upload_model( | |
| model_path: str, | |
| outdir: str, | |
| repo_id: str, | |
| oauth_token: gr.OAuthToken | None, | |
| split_max_tensors: int = 256, | |
| split_max_size: str | None = None, | |
| org_token: str | None = None, | |
| export_to_org: bool = False, | |
| ) -> None: | |
| logger.info("Model path: %s", model_path) | |
| logger.info("Output dir: %s", outdir) | |
| if oauth_token is None or oauth_token.token is None: | |
| raise ValueError("You have to be logged in.") | |
| split_cmd = ["./llama.cpp/llama-gguf-split", "--split"] | |
| if split_max_size: | |
| split_cmd.extend(["--split-max-size", split_max_size]) | |
| else: | |
| split_cmd.extend(["--split-max-tensors", str(split_max_tensors)]) | |
| model_path_prefix = ".".join(model_path.split(".")[:-1]) | |
| split_cmd.extend([model_path, model_path_prefix]) | |
| logger.info("Split command: %s", split_cmd) | |
| result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) | |
| logger.info("Split command stdout: %s", result.stdout) | |
| logger.info("Split command stderr: %s", result.stderr) | |
| if result.returncode != 0: | |
| raise RuntimeError(f"Error splitting the model: {result.stderr}") | |
| logger.info("Model split successfully!") | |
| if os.path.exists(model_path): | |
| os.remove(model_path) | |
| model_file_prefix = model_path_prefix.split("/")[-1] | |
| logger.info("Model file name prefix: %s", model_file_prefix) | |
| sharded_model_files = [ | |
| f | |
| for f in os.listdir(outdir) | |
| if f.startswith(model_file_prefix) and f.endswith(".gguf") | |
| ] | |
| if not sharded_model_files: | |
| raise RuntimeError("No sharded files found.") | |
| logger.info("Sharded model files: %s", sharded_model_files) | |
| api = HfApi(token=org_token if (export_to_org and org_token) else oauth_token.token) | |
| for file in sharded_model_files: | |
| file_path = os.path.join(outdir, file) | |
| logger.info("Uploading file: %s", file_path) | |
| try: | |
| api.upload_file( | |
| path_or_fileobj=file_path, | |
| path_in_repo=file, | |
| repo_id=repo_id, | |
| ) | |
| except Exception as e: | |
| raise RuntimeError(f"Error uploading file {file_path}: {e}") from e | |
| logger.info("Sharded model has been uploaded successfully!") | |
| def get_new_model_card( | |
| original_card: ModelCard, | |
| original_model_id: str, | |
| gguf_files: list, | |
| new_repo_url: str, | |
| split_model: bool, | |
| ) -> ModelCard: | |
| version = get_llama_cpp_version() | |
| model_card = deepcopy(original_card) | |
| model_card.data.tags = (model_card.data.tags or []) + [ | |
| "antigma", | |
| "quantize-my-repo", | |
| ] | |
| model_card.data.base_model = original_model_id | |
| # Format the table rows | |
| table_rows = [] | |
| for file_info in gguf_files: | |
| name, _, size, method = file_info | |
| if split_model: | |
| display_name = name[:-5] | |
| else: | |
| display_name = f"[{name}]({new_repo_url}/blob/main/{name})" | |
| table_rows.append(f"{display_name}|{method}|{size:.2f} GB|{split_model}|\n") | |
| model_card.text = f""" | |
| *Produced by [Antigma Labs](https://antigma.ai), [Antigma Quantize Space](https://huggingface.co/spaces/Antigma/quantize-my-repo)* | |
| *Follow Antigma Labs in X [https://x.com/antigma_labs](https://x.com/antigma_labs)* | |
| *Antigma's GitHub Homepage [https://github.com/AntigmaLabs](https://github.com/AntigmaLabs)* | |
| ## Quantization Format (GGUF) | |
| We use <a href="https://github.com/ggml-org/llama.cpp">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/{version}">{version}</a> for quantization. | |
| Original model: https://huggingface.co/{original_model_id} | |
| ## Download a file (not the whole branch) from below: | |
| | Filename | Quant type | File Size | Split | | |
| | -------- | ---------- | --------- | ----- | | |
| | {'|'.join(table_rows)} | |
| ## Original Model Card | |
| {original_card.text} | |
| ## Downloading using huggingface-cli | |
| <details> | |
| <summary>Click to view download instructions</summary> | |
| First, make sure you have hugginface-cli installed: | |
| ``` | |
| pip install -U "huggingface_hub[cli]" | |
| ``` | |
| Then, you can target the specific file you want: | |
| ``` | |
| huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./ | |
| ``` | |
| If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: | |
| ``` | |
| huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./ | |
| ``` | |
| You can either specify a new local-dir (e.g. deepseek-ai_DeepSeek-V3-0324-Q8_0) or it will be in default hugging face cache | |
| </details> | |
| """ | |
| return model_card | |
| def process_model( | |
| model_id: str, | |
| q_method: str | list, | |
| use_imatrix: bool, | |
| imatrix_q_method: str, | |
| private_repo: bool, | |
| train_data_file: gr.File | None, | |
| split_model: bool, | |
| split_max_tensors: int, | |
| split_max_size: str | None, | |
| export_to_org: bool, | |
| repo_owner: str, | |
| org_token: str | None, | |
| oauth_token: gr.OAuthToken | None, | |
| ) -> tuple[str, str]: | |
| if oauth_token is None or oauth_token.token is None: | |
| raise gr.Error("You must be logged in to use quantize-my-repo") | |
| try: | |
| whoami(oauth_token.token) | |
| except Exception as e: | |
| raise gr.Error("You must be logged in to use quantize-my-repo") from e | |
| user_info = whoami(oauth_token.token) | |
| username = user_info["name"] | |
| user_orgs = user_info.get("orgs", []) | |
| if not export_to_org: | |
| repo_owner = "self" | |
| current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| logger.info( | |
| "Time %s, Username %s, Model_ID %s, q_method %s", | |
| current_time, | |
| username, | |
| model_id, | |
| ",".join(q_method) if isinstance(q_method, list) else q_method, | |
| ) | |
| repo_namespace = get_repo_namespace(repo_owner, username, user_orgs) | |
| model_name = model_id.split("/")[-1] | |
| try: | |
| api_token = org_token if (export_to_org and org_token) else oauth_token.token | |
| api = HfApi(token=api_token) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| pattern = ( | |
| "*.safetensors" | |
| if any( | |
| f.path.endswith(".safetensors") | |
| for f in api.list_repo_tree(repo_id=model_id, recursive=True) | |
| ) | |
| else "*.bin" | |
| ) | |
| dl_pattern.append(pattern) | |
| os.makedirs(downloads_dir, exist_ok=True) | |
| os.makedirs(outputs_dir, exist_ok=True) | |
| with tempfile.TemporaryDirectory(dir=outputs_dir) as outdir: | |
| fp16 = str(Path(outdir) / f"{model_name}.fp16.gguf") | |
| with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir: | |
| logger.info("Start download") | |
| local_dir = Path(tmpdir) / model_name | |
| api.snapshot_download( | |
| repo_id=model_id, | |
| local_dir=local_dir, | |
| local_dir_use_symlinks=False, | |
| allow_patterns=dl_pattern, | |
| ) | |
| config_dir = local_dir / "config.json" | |
| adapter_config_dir = local_dir / "adapter_config.json" | |
| if os.path.exists(adapter_config_dir) and not os.path.exists( | |
| config_dir | |
| ): | |
| raise RuntimeError( | |
| "adapter_config.json is present. If converting LoRA, use GGUF-my-lora." | |
| ) | |
| logger.info("Download successfully") | |
| result = subprocess.run( | |
| [ | |
| "python", | |
| CONVERSION_SCRIPT, | |
| local_dir, | |
| "--outtype", | |
| "f16", | |
| "--outfile", | |
| fp16, | |
| ], | |
| shell=False, | |
| capture_output=True, | |
| ) | |
| logger.info("Converted to f16") | |
| if result.returncode != 0: | |
| raise RuntimeError( | |
| f"Error converting to fp16: {result.stderr.decode()}" | |
| ) | |
| shutil.rmtree(downloads_dir) | |
| imatrix_path = Path(outdir) / "imatrix.dat" | |
| if use_imatrix: | |
| train_data_path = ( | |
| train_data_file.name | |
| if train_data_file | |
| else "llama.cpp/groups_merged.txt" | |
| ) | |
| if not os.path.isfile(train_data_path): | |
| raise FileNotFoundError( | |
| f"Training data not found: {train_data_path}" | |
| ) | |
| generate_importance_matrix(fp16, train_data_path, imatrix_path) | |
| quant_methods = ( | |
| [imatrix_q_method] | |
| if use_imatrix | |
| else (q_method if isinstance(q_method, list) else [q_method]) | |
| ) | |
| suffix = "imat" if use_imatrix else None | |
| gguf_files = [] | |
| for method in quant_methods: | |
| logger.info("Begin quantize") | |
| name = ( | |
| f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" | |
| if suffix | |
| else f"{model_name.lower()}-{method.lower()}.gguf" | |
| ) | |
| path = str(Path(outdir) / name) | |
| quant_cmd = ( | |
| [ | |
| "./llama.cpp/llama-quantize", | |
| "--imatrix", | |
| imatrix_path, | |
| fp16, | |
| path, | |
| method, | |
| ] | |
| if use_imatrix | |
| else ["./llama.cpp/llama-quantize", fp16, path, method] | |
| ) | |
| result = subprocess.run(quant_cmd, shell=False, capture_output=True) | |
| if result.returncode != 0: | |
| raise RuntimeError( | |
| f"Quantization failed ({method}): {result.stderr.decode()}" | |
| ) | |
| size = os.path.getsize(path) / 1024 / 1024 / 1024 | |
| gguf_files.append((name, path, size, method)) | |
| logger.info("Quantize successfully!") | |
| suffix_for_repo = ( | |
| f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods) | |
| ) | |
| repo_id = f"{repo_namespace}/{model_name}-GGUF" | |
| new_repo_url = api.create_repo( | |
| repo_id=repo_id, exist_ok=True, private=private_repo | |
| ) | |
| try: | |
| original_card = ModelCard.load(model_id, token=oauth_token.token) | |
| except Exception: | |
| original_card = ModelCard("") | |
| card = get_new_model_card( | |
| original_card, model_id, gguf_files, new_repo_url, split_model | |
| ) | |
| readme_path = Path(outdir) / "README.md" | |
| card.save(readme_path) | |
| for name, path, _, _ in gguf_files: | |
| if split_model: | |
| split_upload_model( | |
| path, | |
| outdir, | |
| repo_id, | |
| oauth_token, | |
| split_max_tensors, | |
| split_max_size, | |
| org_token, | |
| export_to_org, | |
| ) | |
| else: | |
| api.upload_file( | |
| path_or_fileobj=path, path_in_repo=name, repo_id=repo_id | |
| ) | |
| if use_imatrix and os.path.isfile(imatrix_path): | |
| api.upload_file( | |
| path_or_fileobj=imatrix_path, | |
| path_in_repo="imatrix.dat", | |
| repo_id=repo_id, | |
| ) | |
| api.upload_file( | |
| path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id | |
| ) | |
| return ( | |
| f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', | |
| f"llama{np.random.randint(9)}.png", | |
| ) | |
| except Exception as e: | |
| return ( | |
| f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', | |
| "error.png", | |
| ) | |
| css = """/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| model_id = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| export_to_org = gr.Checkbox( | |
| label="Export to Organization Repository", | |
| value=False, | |
| info="If checked, you can select an organization to export to.", | |
| ) | |
| repo_owner = gr.Dropdown( | |
| choices=["self"], value="self", label="Repository Owner", visible=False | |
| ) | |
| org_token = gr.Textbox(label="Org Access Token", type="password", visible=False) | |
| q_method = gr.Dropdown( | |
| [ | |
| "Q2_K", | |
| "Q3_K_S", | |
| "Q3_K_M", | |
| "Q3_K_L", | |
| "Q4_0", | |
| "Q4_K_S", | |
| "Q4_K_M", | |
| "Q5_0", | |
| "Q5_K_S", | |
| "Q5_K_M", | |
| "Q6_K", | |
| "Q8_0", | |
| ], | |
| label="Quantization Method", | |
| info="GGML quantization type", | |
| value="Q4_K_M", | |
| filterable=False, | |
| visible=True, | |
| multiselect=True, | |
| ) | |
| imatrix_q_method = gr.Dropdown( | |
| ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], | |
| label="Imatrix Quantization Method", | |
| info="GGML imatrix quants type", | |
| value="IQ4_NL", | |
| filterable=False, | |
| visible=False, | |
| ) | |
| use_imatrix = gr.Checkbox( | |
| value=False, | |
| label="Use Imatrix Quantization", | |
| info="Use importance matrix for quantization.", | |
| ) | |
| private_repo = gr.Checkbox( | |
| value=False, label="Private Repo", info="Create a private repo under your username." | |
| ) | |
| train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False) | |
| split_model = gr.Checkbox( | |
| value=False, label="Split Model", info="Shard the model using gguf-split." | |
| ) | |
| split_max_tensors = gr.Number( | |
| value=256, | |
| label="Max Tensors per File", | |
| info="Maximum number of tensors per file when splitting model.", | |
| visible=False, | |
| ) | |
| split_max_size = gr.Textbox( | |
| label="Max File Size", | |
| info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", | |
| visible=False, | |
| ) | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| model_id, | |
| q_method, | |
| use_imatrix, | |
| imatrix_q_method, | |
| private_repo, | |
| train_data_file, | |
| split_model, | |
| split_max_tensors, | |
| split_max_size, | |
| export_to_org, | |
| repo_owner, | |
| org_token, | |
| ], | |
| outputs=[gr.Markdown(label="Output"), gr.Image(show_label=False)], | |
| title="Make your own GGUF Quants — faster than ever before, believe me.", | |
| description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.", | |
| api_name=False, | |
| ) | |
| with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo: | |
| gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.") | |
| gr.LoginButton(min_width=250) | |
| export_to_org.change( | |
| fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token] | |
| ) | |
| split_model.change( | |
| fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), | |
| inputs=split_model, | |
| outputs=[split_max_tensors, split_max_size], | |
| ) | |
| use_imatrix.change( | |
| fn=lambda use: ( | |
| gr.update(visible=not use), | |
| gr.update(visible=use), | |
| gr.update(visible=use), | |
| ), | |
| inputs=use_imatrix, | |
| outputs=[q_method, imatrix_q_method, train_data_file], | |
| ) | |
| iface.render() | |
| def restart_space(): | |
| HfApi().restart_space( | |
| repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=86400) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) | |