Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,8 +14,67 @@ import numpy as np
|
|
| 14 |
|
| 15 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 16 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
| 20 |
if repo_owner == 'self':
|
| 21 |
return username
|
|
@@ -141,94 +200,86 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 141 |
|
| 142 |
|
| 143 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 144 |
-
|
| 145 |
|
| 146 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
| 147 |
model_name = model_id.split('/')[-1]
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
|
| 225 |
-
else:
|
| 226 |
-
api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
|
| 227 |
-
if use_imatrix and os.path.isfile(imatrix_path):
|
| 228 |
-
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
|
| 229 |
-
api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
|
| 230 |
-
|
| 231 |
-
return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', f"llama{np.random.randint(9)}.png")
|
| 232 |
|
| 233 |
|
| 234 |
css="""/* Custom CSS to allow scrolling */
|
|
@@ -339,7 +390,7 @@ iface = gr.Interface(
|
|
| 339 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
| 340 |
api_name=False
|
| 341 |
)
|
| 342 |
-
with gr.Blocks(css=".gradio-container {overflow-y: auto;}"
|
| 343 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
| 344 |
gr.LoginButton(min_width=250)
|
| 345 |
|
|
@@ -353,7 +404,6 @@ with gr.Blocks(css=".gradio-container {overflow-y: auto;}",theme=gr.themes.Glass
|
|
| 353 |
iface.render()
|
| 354 |
|
| 355 |
|
| 356 |
-
|
| 357 |
def restart_space():
|
| 358 |
HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True)
|
| 359 |
|
|
|
|
| 14 |
|
| 15 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 16 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
| 17 |
+
|
| 18 |
+
log_dir = "/data/logs"
|
| 19 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 20 |
+
|
| 21 |
+
logging.basicConfig(
|
| 22 |
+
filename=os.path.join(log_dir, "app.log"),
|
| 23 |
+
level=logging.INFO,
|
| 24 |
+
format="%(asctime)s - %(levelname)s - %(message)s"
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
+
def get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id = None,):
|
| 30 |
+
try:
|
| 31 |
+
result = subprocess.run(
|
| 32 |
+
['git', '-C', './llama.cpp', 'describe', '--tags', '--always'],
|
| 33 |
+
stdout=subprocess.PIPE,
|
| 34 |
+
stderr=subprocess.PIPE,
|
| 35 |
+
check=True,
|
| 36 |
+
text=True
|
| 37 |
+
)
|
| 38 |
+
version = result.stdout.strip().split('-')[0]
|
| 39 |
+
text = f"""
|
| 40 |
+
*Produced by [Antigma Labs](https://antigma.ai)*
|
| 41 |
+
## llama.cpp quantization
|
| 42 |
+
Using <a href="https://github.com/ggml-org/llama.cpp">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/{version}">b4944</a> for quantization.
|
| 43 |
+
Original model: https://huggingface.co/{model_id}
|
| 44 |
+
Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
|
| 45 |
+
## Prompt format
|
| 46 |
+
```
|
| 47 |
+
<|begin▁of▁sentence|>{{system_prompt}}<|User|>{{prompt}}<|Assistant|><|end▁of▁sentence|><|Assistant|>
|
| 48 |
+
```
|
| 49 |
+
## Download a file (not the whole branch) from below:
|
| 50 |
+
| Filename | Quant type | File Size | Split |
|
| 51 |
+
| -------- | ---------- | --------- | ----- |
|
| 52 |
+
| {'|'.join(['|'.join([gguf_files[i][0][:-5] if split_model else ('['+gguf_files[i][0]+']'+'(' + new_repo_url+'/blob/main/'+gguf_files[i][0] + ')'), gguf_files[i][3], f"{gguf_files[i][2]:.2f}" + ' GB', str(split_model),'''
|
| 53 |
+
''']) for i in range(len(gguf_files))]) }
|
| 54 |
+
## Downloading using huggingface-cli
|
| 55 |
+
<details>
|
| 56 |
+
<summary>Click to view download instructions</summary>
|
| 57 |
+
First, make sure you have hugginface-cli installed:
|
| 58 |
+
```
|
| 59 |
+
pip install -U "huggingface_hub[cli]"
|
| 60 |
+
```
|
| 61 |
+
Then, you can target the specific file you want:
|
| 62 |
+
```
|
| 63 |
+
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./
|
| 64 |
+
```
|
| 65 |
+
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
|
| 66 |
+
```
|
| 67 |
+
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./
|
| 68 |
+
```
|
| 69 |
+
You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./)
|
| 70 |
+
</details>
|
| 71 |
+
"""
|
| 72 |
+
return text
|
| 73 |
+
except subprocess.CalledProcessError as e:
|
| 74 |
+
print("Error:", e.stderr.strip())
|
| 75 |
+
return None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
| 79 |
if repo_owner == 'self':
|
| 80 |
return username
|
|
|
|
| 200 |
|
| 201 |
|
| 202 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 203 |
+
logger.info(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
|
| 204 |
|
| 205 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
| 206 |
model_name = model_id.split('/')[-1]
|
| 207 |
+
try:
|
| 208 |
+
api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
|
| 209 |
+
api = HfApi(token=api_token)
|
| 210 |
+
|
| 211 |
+
dl_pattern = ["*.md", "*.json", "*.model"]
|
| 212 |
+
pattern = "*.safetensors" if any(
|
| 213 |
+
f.path.endswith(".safetensors")
|
| 214 |
+
for f in api.list_repo_tree(repo_id=model_id, recursive=True)
|
| 215 |
+
) else "*.bin"
|
| 216 |
+
dl_pattern += [pattern]
|
| 217 |
+
|
| 218 |
+
os.makedirs("downloads", exist_ok=True)
|
| 219 |
+
os.makedirs("outputs", exist_ok=True)
|
| 220 |
+
|
| 221 |
+
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
| 222 |
+
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 223 |
+
|
| 224 |
+
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
| 225 |
+
local_dir = Path(tmpdir)/model_name
|
| 226 |
+
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 227 |
+
|
| 228 |
+
config_dir = local_dir/"config.json"
|
| 229 |
+
adapter_config_dir = local_dir/"adapter_config.json"
|
| 230 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 231 |
+
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
| 232 |
+
|
| 233 |
+
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
| 234 |
+
if result.returncode != 0:
|
| 235 |
+
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
| 236 |
+
|
| 237 |
+
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 238 |
+
if use_imatrix:
|
| 239 |
+
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
| 240 |
+
if not os.path.isfile(train_data_path):
|
| 241 |
+
raise Exception(f"Training data not found: {train_data_path}")
|
| 242 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
| 243 |
+
|
| 244 |
+
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
|
| 245 |
+
suffix = "imat" if use_imatrix else None
|
| 246 |
+
|
| 247 |
+
gguf_files = []
|
| 248 |
+
for method in quant_methods:
|
| 249 |
+
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 250 |
+
path = str(Path(outdir)/name)
|
| 251 |
+
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
| 252 |
+
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
| 253 |
+
if result.returncode != 0:
|
| 254 |
+
raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
|
| 255 |
+
size = os.path.getsize(path)/1024/1024/1024
|
| 256 |
+
gguf_files.append((name, path, size, method))
|
| 257 |
+
|
| 258 |
+
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 259 |
+
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
| 260 |
+
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 264 |
+
except:
|
| 265 |
+
card = ModelCard("")
|
| 266 |
+
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
| 267 |
+
card.data.base_model = model_id
|
| 268 |
+
card.text = dedent(get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id))
|
| 269 |
+
readme_path = Path(outdir)/"README.md"
|
| 270 |
+
card.save(readme_path)
|
| 271 |
+
for name, path, _, _ in gguf_files:
|
| 272 |
+
if split_model:
|
| 273 |
+
split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
|
| 274 |
+
else:
|
| 275 |
+
api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
|
| 276 |
+
if use_imatrix and os.path.isfile(imatrix_path):
|
| 277 |
+
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
|
| 278 |
+
api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
|
| 279 |
+
|
| 280 |
+
return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', f"llama{np.random.randint(9)}.png")
|
| 281 |
+
except Exception as e:
|
| 282 |
+
raise (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
|
| 285 |
css="""/* Custom CSS to allow scrolling */
|
|
|
|
| 390 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
| 391 |
api_name=False
|
| 392 |
)
|
| 393 |
+
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
| 394 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
| 395 |
gr.LoginButton(min_width=250)
|
| 396 |
|
|
|
|
| 404 |
iface.render()
|
| 405 |
|
| 406 |
|
|
|
|
| 407 |
def restart_space():
|
| 408 |
HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True)
|
| 409 |
|