Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
| 11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 12 |
from datetime import datetime
|
| 13 |
import numpy as np
|
|
|
|
| 14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 15 |
|
| 16 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
@@ -60,16 +61,22 @@ Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or an
|
|
| 60 |
First, make sure you have hugginface-cli installed:
|
| 61 |
```
|
| 62 |
pip install -U "huggingface_hub[cli]"
|
|
|
|
| 63 |
```
|
| 64 |
Then, you can target the specific file you want:
|
|
|
|
| 65 |
```
|
| 66 |
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./
|
|
|
|
| 67 |
```
|
| 68 |
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
|
|
|
|
| 69 |
```
|
| 70 |
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./
|
|
|
|
| 71 |
```
|
| 72 |
You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./)
|
|
|
|
| 73 |
</details>
|
| 74 |
"""
|
| 75 |
return text
|
|
@@ -229,7 +236,8 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 229 |
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 230 |
|
| 231 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
| 232 |
-
print("
|
|
|
|
| 233 |
local_dir = Path(tmpdir)/model_name
|
| 234 |
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 235 |
|
|
@@ -237,12 +245,16 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 237 |
adapter_config_dir = local_dir/"adapter_config.json"
|
| 238 |
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 239 |
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
|
|
|
|
|
|
| 240 |
|
| 241 |
-
print("Download successfully")
|
| 242 |
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
| 243 |
-
print("Converted to f16")
|
|
|
|
|
|
|
| 244 |
if result.returncode != 0:
|
| 245 |
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
|
|
|
| 246 |
|
| 247 |
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 248 |
if use_imatrix:
|
|
@@ -256,7 +268,9 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 256 |
|
| 257 |
gguf_files = []
|
| 258 |
for method in quant_methods:
|
| 259 |
-
print("Begin quantize")
|
|
|
|
|
|
|
| 260 |
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 261 |
path = str(Path(outdir)/name)
|
| 262 |
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
|
@@ -266,7 +280,9 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 266 |
size = os.path.getsize(path)/1024/1024/1024
|
| 267 |
gguf_files.append((name, path, size, method))
|
| 268 |
|
| 269 |
-
print("Quantize successfully!")
|
|
|
|
|
|
|
| 270 |
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 271 |
repo_id = f"{repo_namespace}/{model_name}-GGUF"
|
| 272 |
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
|
|
|
| 11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 12 |
from datetime import datetime
|
| 13 |
import numpy as np
|
| 14 |
+
import shutil
|
| 15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
|
| 17 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
| 61 |
First, make sure you have hugginface-cli installed:
|
| 62 |
```
|
| 63 |
pip install -U "huggingface_hub[cli]"
|
| 64 |
+
|
| 65 |
```
|
| 66 |
Then, you can target the specific file you want:
|
| 67 |
+
|
| 68 |
```
|
| 69 |
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./
|
| 70 |
+
|
| 71 |
```
|
| 72 |
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
|
| 73 |
+
|
| 74 |
```
|
| 75 |
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./
|
| 76 |
+
|
| 77 |
```
|
| 78 |
You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./)
|
| 79 |
+
|
| 80 |
</details>
|
| 81 |
"""
|
| 82 |
return text
|
|
|
|
| 236 |
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 237 |
|
| 238 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
| 239 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download")
|
| 240 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download")
|
| 241 |
local_dir = Path(tmpdir)/model_name
|
| 242 |
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 243 |
|
|
|
|
| 245 |
adapter_config_dir = local_dir/"adapter_config.json"
|
| 246 |
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 247 |
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
| 248 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Download successfully")
|
| 249 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Download successfully")
|
| 250 |
|
|
|
|
| 251 |
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
| 252 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Converted to f16")
|
| 253 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Converted to f16")
|
| 254 |
+
|
| 255 |
if result.returncode != 0:
|
| 256 |
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
| 257 |
+
shutil.rmtree(downloads_dir)
|
| 258 |
|
| 259 |
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 260 |
if use_imatrix:
|
|
|
|
| 268 |
|
| 269 |
gguf_files = []
|
| 270 |
for method in quant_methods:
|
| 271 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Begin quantize")
|
| 272 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Begin quantize")
|
| 273 |
+
|
| 274 |
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 275 |
path = str(Path(outdir)/name)
|
| 276 |
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
|
|
|
| 280 |
size = os.path.getsize(path)/1024/1024/1024
|
| 281 |
gguf_files.append((name, path, size, method))
|
| 282 |
|
| 283 |
+
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!")
|
| 284 |
+
logger.info(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!")
|
| 285 |
+
|
| 286 |
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 287 |
repo_id = f"{repo_namespace}/{model_name}-GGUF"
|
| 288 |
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|