Spaces:
Runtime error
Runtime error
big refactor to include original model card
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import subprocess
|
|
| 3 |
import signal
|
| 4 |
import tempfile
|
| 5 |
from pathlib import Path
|
| 6 |
-
from textwrap import dedent
|
| 7 |
import logging
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import HfApi, ModelCard, whoami
|
|
@@ -32,12 +31,7 @@ logging.basicConfig(
|
|
| 32 |
logger = logging.getLogger(__name__)
|
| 33 |
|
| 34 |
|
| 35 |
-
def
|
| 36 |
-
gguf_files,
|
| 37 |
-
new_repo_url,
|
| 38 |
-
split_model,
|
| 39 |
-
model_id=None,
|
| 40 |
-
):
|
| 41 |
try:
|
| 42 |
result = subprocess.run(
|
| 43 |
["git", "-C", "./llama.cpp", "describe", "--tags", "--always"],
|
|
@@ -47,58 +41,13 @@ def get_llama_cpp_notes(
|
|
| 47 |
text=True,
|
| 48 |
)
|
| 49 |
version = result.stdout.strip().split("-")[0]
|
| 50 |
-
|
| 51 |
-
*Produced by [Antigma Labs](https://antigma.ai), [Antigma Quantize Space](https://huggingface.co/spaces/Antigma/quantize-my-repo)*
|
| 52 |
-
|
| 53 |
-
*Follow Antigma Labs in X [https://x.com/antigma_labs](https://x.com/antigma_labs)*
|
| 54 |
-
|
| 55 |
-
*Antigma's GitHub Homepage [https://github.com/AntigmaLabs](https://github.com/AntigmaLabs)*
|
| 56 |
-
|
| 57 |
-
## llama.cpp quantization
|
| 58 |
-
Using <a href="https://github.com/ggml-org/llama.cpp">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/{version}">{version}</a> for quantization.
|
| 59 |
-
Original model: https://huggingface.co/{model_id}
|
| 60 |
-
Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
|
| 61 |
-
## Prompt format
|
| 62 |
-
```
|
| 63 |
-
<|begin▁of▁sentence|>{{system_prompt}}<|User|>{{prompt}}<|Assistant|><|end▁of▁sentence|><|Assistant|>
|
| 64 |
-
```
|
| 65 |
-
## Download a file (not the whole branch) from below:
|
| 66 |
-
| Filename | Quant type | File Size | Split |
|
| 67 |
-
| -------- | ---------- | --------- | ----- |
|
| 68 |
-
| {'|'.join(['|'.join([gguf_files[i][0][:-5] if split_model else ('['+gguf_files[i][0]+']'+'(' + new_repo_url+'/blob/main/'+gguf_files[i][0] + ')'), gguf_files[i][3], f"{gguf_files[i][2]:.2f}" + ' GB', str(split_model),'''
|
| 69 |
-
''']) for i in range(len(gguf_files))]) }
|
| 70 |
-
## Downloading using huggingface-cli
|
| 71 |
-
<details>
|
| 72 |
-
<summary>Click to view download instructions</summary>
|
| 73 |
-
First, make sure you have hugginface-cli installed:
|
| 74 |
-
|
| 75 |
-
```
|
| 76 |
-
pip install -U "huggingface_hub[cli]"
|
| 77 |
-
```
|
| 78 |
-
|
| 79 |
-
Then, you can target the specific file you want:
|
| 80 |
-
|
| 81 |
-
```
|
| 82 |
-
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./
|
| 83 |
-
```
|
| 84 |
-
|
| 85 |
-
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
|
| 86 |
-
|
| 87 |
-
```
|
| 88 |
-
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./
|
| 89 |
-
```
|
| 90 |
-
|
| 91 |
-
You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or download them all in place (./)
|
| 92 |
-
|
| 93 |
-
</details>
|
| 94 |
-
"""
|
| 95 |
-
return text
|
| 96 |
except subprocess.CalledProcessError as e:
|
| 97 |
-
|
| 98 |
return None
|
| 99 |
|
| 100 |
|
| 101 |
-
def get_repo_namespace(repo_owner, username, user_orgs):
|
| 102 |
if repo_owner == "self":
|
| 103 |
return username
|
| 104 |
for org in user_orgs:
|
|
@@ -117,7 +66,7 @@ def escape(s: str) -> str:
|
|
| 117 |
)
|
| 118 |
|
| 119 |
|
| 120 |
-
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
| 121 |
if oauth_token is None or oauth_token.token is None:
|
| 122 |
raise gr.Error("You must be logged in to use quantize-my-repo")
|
| 123 |
if not export_to_org:
|
|
@@ -131,7 +80,9 @@ def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
|
| 131 |
)
|
| 132 |
|
| 133 |
|
| 134 |
-
def generate_importance_matrix(
|
|
|
|
|
|
|
| 135 |
imatrix_command = [
|
| 136 |
"./llama.cpp/llama-imatrix",
|
| 137 |
"-m",
|
|
@@ -147,25 +98,27 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
| 147 |
]
|
| 148 |
|
| 149 |
if not os.path.isfile(model_path):
|
| 150 |
-
raise
|
| 151 |
|
| 152 |
-
|
| 153 |
process = subprocess.Popen(imatrix_command, shell=False)
|
| 154 |
|
| 155 |
try:
|
| 156 |
-
process.wait(timeout=60)
|
| 157 |
except subprocess.TimeoutExpired:
|
| 158 |
-
|
| 159 |
"Imatrix computation timed out. Sending SIGINT to allow graceful termination..."
|
| 160 |
)
|
| 161 |
process.send_signal(signal.SIGINT)
|
| 162 |
try:
|
| 163 |
-
process.wait(timeout=5)
|
| 164 |
except subprocess.TimeoutExpired:
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
process.kill()
|
| 167 |
|
| 168 |
-
|
| 169 |
|
| 170 |
|
| 171 |
def split_upload_model(
|
|
@@ -173,101 +126,160 @@ def split_upload_model(
|
|
| 173 |
outdir: str,
|
| 174 |
repo_id: str,
|
| 175 |
oauth_token: gr.OAuthToken | None,
|
| 176 |
-
split_max_tensors=256,
|
| 177 |
-
split_max_size=None,
|
| 178 |
-
org_token=None,
|
| 179 |
-
export_to_org=False,
|
| 180 |
-
):
|
| 181 |
-
|
| 182 |
-
|
| 183 |
|
| 184 |
if oauth_token is None or oauth_token.token is None:
|
| 185 |
raise ValueError("You have to be logged in.")
|
| 186 |
|
| 187 |
-
split_cmd = [
|
| 188 |
-
"./llama.cpp/llama-gguf-split",
|
| 189 |
-
"--split",
|
| 190 |
-
]
|
| 191 |
if split_max_size:
|
| 192 |
-
split_cmd.
|
| 193 |
-
split_cmd.append(split_max_size)
|
| 194 |
else:
|
| 195 |
-
split_cmd.
|
| 196 |
-
split_cmd.append(str(split_max_tensors))
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
model_path.split(".")[:-1]
|
| 201 |
-
) # remove the file extension
|
| 202 |
-
split_cmd.append(model_path)
|
| 203 |
-
split_cmd.append(model_path_prefix)
|
| 204 |
|
| 205 |
-
|
| 206 |
|
| 207 |
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
| 208 |
-
|
| 209 |
-
|
| 210 |
|
| 211 |
if result.returncode != 0:
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
print("Model split successfully!")
|
| 215 |
|
| 216 |
-
# remove the original model file if needed
|
| 217 |
if os.path.exists(model_path):
|
| 218 |
os.remove(model_path)
|
| 219 |
|
| 220 |
model_file_prefix = model_path_prefix.split("/")[-1]
|
| 221 |
-
|
| 222 |
sharded_model_files = [
|
| 223 |
f
|
| 224 |
for f in os.listdir(outdir)
|
| 225 |
if f.startswith(model_file_prefix) and f.endswith(".gguf")
|
| 226 |
]
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
else:
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
|
| 250 |
def process_model(
|
| 251 |
-
model_id,
|
| 252 |
-
q_method,
|
| 253 |
-
use_imatrix,
|
| 254 |
-
imatrix_q_method,
|
| 255 |
-
private_repo,
|
| 256 |
-
train_data_file,
|
| 257 |
-
split_model,
|
| 258 |
-
split_max_tensors,
|
| 259 |
-
split_max_size,
|
| 260 |
-
export_to_org,
|
| 261 |
-
repo_owner,
|
| 262 |
-
org_token,
|
| 263 |
oauth_token: gr.OAuthToken | None,
|
| 264 |
-
):
|
| 265 |
if oauth_token is None or oauth_token.token is None:
|
| 266 |
raise gr.Error("You must be logged in to use quantize-my-repo")
|
| 267 |
try:
|
| 268 |
whoami(oauth_token.token)
|
| 269 |
except Exception as e:
|
| 270 |
-
raise gr.Error("You must be logged in to use quantize-my-repo")
|
| 271 |
|
| 272 |
user_info = whoami(oauth_token.token)
|
| 273 |
username = user_info["name"]
|
|
@@ -277,15 +289,17 @@ def process_model(
|
|
| 277 |
|
| 278 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 279 |
logger.info(
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
)
|
| 282 |
|
| 283 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
| 284 |
model_name = model_id.split("/")[-1]
|
| 285 |
try:
|
| 286 |
-
api_token = (
|
| 287 |
-
org_token if (export_to_org and org_token != "") else oauth_token.token
|
| 288 |
-
)
|
| 289 |
api = HfApi(token=api_token)
|
| 290 |
|
| 291 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
|
@@ -297,7 +311,7 @@ def process_model(
|
|
| 297 |
)
|
| 298 |
else "*.bin"
|
| 299 |
)
|
| 300 |
-
dl_pattern
|
| 301 |
|
| 302 |
os.makedirs(downloads_dir, exist_ok=True)
|
| 303 |
os.makedirs(outputs_dir, exist_ok=True)
|
|
@@ -306,10 +320,7 @@ def process_model(
|
|
| 306 |
fp16 = str(Path(outdir) / f"{model_name}.fp16.gguf")
|
| 307 |
|
| 308 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
| 309 |
-
|
| 310 |
-
logger.info(
|
| 311 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download"
|
| 312 |
-
)
|
| 313 |
local_dir = Path(tmpdir) / model_name
|
| 314 |
api.snapshot_download(
|
| 315 |
repo_id=model_id,
|
|
@@ -323,17 +334,10 @@ def process_model(
|
|
| 323 |
if os.path.exists(adapter_config_dir) and not os.path.exists(
|
| 324 |
config_dir
|
| 325 |
):
|
| 326 |
-
raise
|
| 327 |
"adapter_config.json is present. If converting LoRA, use GGUF-my-lora."
|
| 328 |
)
|
| 329 |
-
|
| 330 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 331 |
-
+ " Download successfully"
|
| 332 |
-
)
|
| 333 |
-
logger.info(
|
| 334 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 335 |
-
+ " Download successfully"
|
| 336 |
-
)
|
| 337 |
|
| 338 |
result = subprocess.run(
|
| 339 |
[
|
|
@@ -348,15 +352,10 @@ def process_model(
|
|
| 348 |
shell=False,
|
| 349 |
capture_output=True,
|
| 350 |
)
|
| 351 |
-
|
| 352 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Converted to f16"
|
| 353 |
-
)
|
| 354 |
-
logger.info(
|
| 355 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Converted to f16"
|
| 356 |
-
)
|
| 357 |
|
| 358 |
if result.returncode != 0:
|
| 359 |
-
raise
|
| 360 |
f"Error converting to fp16: {result.stderr.decode()}"
|
| 361 |
)
|
| 362 |
shutil.rmtree(downloads_dir)
|
|
@@ -369,7 +368,9 @@ def process_model(
|
|
| 369 |
else "llama.cpp/groups_merged.txt"
|
| 370 |
)
|
| 371 |
if not os.path.isfile(train_data_path):
|
| 372 |
-
raise
|
|
|
|
|
|
|
| 373 |
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
| 374 |
|
| 375 |
quant_methods = (
|
|
@@ -381,11 +382,7 @@ def process_model(
|
|
| 381 |
|
| 382 |
gguf_files = []
|
| 383 |
for method in quant_methods:
|
| 384 |
-
|
| 385 |
-
logger.info(
|
| 386 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Begin quantize"
|
| 387 |
-
)
|
| 388 |
-
|
| 389 |
name = (
|
| 390 |
f"{model_name.lower()}-{method.lower()}-{suffix}.gguf"
|
| 391 |
if suffix
|
|
@@ -406,18 +403,13 @@ def process_model(
|
|
| 406 |
)
|
| 407 |
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
| 408 |
if result.returncode != 0:
|
| 409 |
-
raise
|
| 410 |
f"Quantization failed ({method}): {result.stderr.decode()}"
|
| 411 |
)
|
| 412 |
size = os.path.getsize(path) / 1024 / 1024 / 1024
|
| 413 |
gguf_files.append((name, path, size, method))
|
| 414 |
|
| 415 |
-
|
| 416 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!"
|
| 417 |
-
)
|
| 418 |
-
logger.info(
|
| 419 |
-
datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Quantize successfully!"
|
| 420 |
-
)
|
| 421 |
|
| 422 |
suffix_for_repo = (
|
| 423 |
f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
|
@@ -428,13 +420,12 @@ def process_model(
|
|
| 428 |
)
|
| 429 |
|
| 430 |
try:
|
| 431 |
-
|
| 432 |
-
except:
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
card
|
| 436 |
-
|
| 437 |
-
get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id)
|
| 438 |
)
|
| 439 |
readme_path = Path(outdir) / "README.md"
|
| 440 |
card.save(readme_path)
|
|
@@ -478,6 +469,7 @@ def process_model(
|
|
| 478 |
css = """/* Custom CSS to allow scrolling */
|
| 479 |
.gradio-container {overflow-y: auto;}
|
| 480 |
"""
|
|
|
|
| 481 |
model_id = HuggingfaceHubSearch(
|
| 482 |
label="Hub Model ID",
|
| 483 |
placeholder="Search for model id on Huggingface",
|
|
@@ -578,6 +570,7 @@ iface = gr.Interface(
|
|
| 578 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
| 579 |
api_name=False,
|
| 580 |
)
|
|
|
|
| 581 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
| 582 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
| 583 |
gr.LoginButton(min_width=250)
|
|
|
|
| 3 |
import signal
|
| 4 |
import tempfile
|
| 5 |
from pathlib import Path
|
|
|
|
| 6 |
import logging
|
| 7 |
import gradio as gr
|
| 8 |
from huggingface_hub import HfApi, ModelCard, whoami
|
|
|
|
| 31 |
logger = logging.getLogger(__name__)
|
| 32 |
|
| 33 |
|
| 34 |
+
def get_llama_cpp_version():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
try:
|
| 36 |
result = subprocess.run(
|
| 37 |
["git", "-C", "./llama.cpp", "describe", "--tags", "--always"],
|
|
|
|
| 41 |
text=True,
|
| 42 |
)
|
| 43 |
version = result.stdout.strip().split("-")[0]
|
| 44 |
+
return version
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
except subprocess.CalledProcessError as e:
|
| 46 |
+
logger.error("Error getting llama.cpp version: %s", e.stderr.strip())
|
| 47 |
return None
|
| 48 |
|
| 49 |
|
| 50 |
+
def get_repo_namespace(repo_owner: str, username: str, user_orgs: list) -> str:
|
| 51 |
if repo_owner == "self":
|
| 52 |
return username
|
| 53 |
for org in user_orgs:
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
|
| 69 |
+
def toggle_repo_owner(export_to_org: bool, oauth_token: gr.OAuthToken | None) -> tuple:
|
| 70 |
if oauth_token is None or oauth_token.token is None:
|
| 71 |
raise gr.Error("You must be logged in to use quantize-my-repo")
|
| 72 |
if not export_to_org:
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
|
| 83 |
+
def generate_importance_matrix(
|
| 84 |
+
model_path: str, train_data_path: str, output_path: str
|
| 85 |
+
) -> None:
|
| 86 |
imatrix_command = [
|
| 87 |
"./llama.cpp/llama-imatrix",
|
| 88 |
"-m",
|
|
|
|
| 98 |
]
|
| 99 |
|
| 100 |
if not os.path.isfile(model_path):
|
| 101 |
+
raise FileNotFoundError(f"Model file not found: {model_path}")
|
| 102 |
|
| 103 |
+
logger.info("Running imatrix command...")
|
| 104 |
process = subprocess.Popen(imatrix_command, shell=False)
|
| 105 |
|
| 106 |
try:
|
| 107 |
+
process.wait(timeout=60)
|
| 108 |
except subprocess.TimeoutExpired:
|
| 109 |
+
logger.warning(
|
| 110 |
"Imatrix computation timed out. Sending SIGINT to allow graceful termination..."
|
| 111 |
)
|
| 112 |
process.send_signal(signal.SIGINT)
|
| 113 |
try:
|
| 114 |
+
process.wait(timeout=5)
|
| 115 |
except subprocess.TimeoutExpired:
|
| 116 |
+
logger.error(
|
| 117 |
+
"Imatrix proc still didn't term. Forecfully terming process..."
|
| 118 |
+
)
|
| 119 |
process.kill()
|
| 120 |
|
| 121 |
+
logger.info("Importance matrix generation completed.")
|
| 122 |
|
| 123 |
|
| 124 |
def split_upload_model(
|
|
|
|
| 126 |
outdir: str,
|
| 127 |
repo_id: str,
|
| 128 |
oauth_token: gr.OAuthToken | None,
|
| 129 |
+
split_max_tensors: int = 256,
|
| 130 |
+
split_max_size: str | None = None,
|
| 131 |
+
org_token: str | None = None,
|
| 132 |
+
export_to_org: bool = False,
|
| 133 |
+
) -> None:
|
| 134 |
+
logger.info("Model path: %s", model_path)
|
| 135 |
+
logger.info("Output dir: %s", outdir)
|
| 136 |
|
| 137 |
if oauth_token is None or oauth_token.token is None:
|
| 138 |
raise ValueError("You have to be logged in.")
|
| 139 |
|
| 140 |
+
split_cmd = ["./llama.cpp/llama-gguf-split", "--split"]
|
|
|
|
|
|
|
|
|
|
| 141 |
if split_max_size:
|
| 142 |
+
split_cmd.extend(["--split-max-size", split_max_size])
|
|
|
|
| 143 |
else:
|
| 144 |
+
split_cmd.extend(["--split-max-tensors", str(split_max_tensors)])
|
|
|
|
| 145 |
|
| 146 |
+
model_path_prefix = ".".join(model_path.split(".")[:-1])
|
| 147 |
+
split_cmd.extend([model_path, model_path_prefix])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
logger.info("Split command: %s", split_cmd)
|
| 150 |
|
| 151 |
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
| 152 |
+
logger.info("Split command stdout: %s", result.stdout)
|
| 153 |
+
logger.info("Split command stderr: %s", result.stderr)
|
| 154 |
|
| 155 |
if result.returncode != 0:
|
| 156 |
+
raise RuntimeError(f"Error splitting the model: {result.stderr}")
|
| 157 |
+
logger.info("Model split successfully!")
|
|
|
|
| 158 |
|
|
|
|
| 159 |
if os.path.exists(model_path):
|
| 160 |
os.remove(model_path)
|
| 161 |
|
| 162 |
model_file_prefix = model_path_prefix.split("/")[-1]
|
| 163 |
+
logger.info("Model file name prefix: %s", model_file_prefix)
|
| 164 |
sharded_model_files = [
|
| 165 |
f
|
| 166 |
for f in os.listdir(outdir)
|
| 167 |
if f.startswith(model_file_prefix) and f.endswith(".gguf")
|
| 168 |
]
|
| 169 |
+
|
| 170 |
+
if not sharded_model_files:
|
| 171 |
+
raise RuntimeError("No sharded files found.")
|
| 172 |
+
|
| 173 |
+
logger.info("Sharded model files: %s", sharded_model_files)
|
| 174 |
+
api = HfApi(token=org_token if (export_to_org and org_token) else oauth_token.token)
|
| 175 |
+
|
| 176 |
+
for file in sharded_model_files:
|
| 177 |
+
file_path = os.path.join(outdir, file)
|
| 178 |
+
logger.info("Uploading file: %s", file_path)
|
| 179 |
+
try:
|
| 180 |
+
api.upload_file(
|
| 181 |
+
path_or_fileobj=file_path,
|
| 182 |
+
path_in_repo=file,
|
| 183 |
+
repo_id=repo_id,
|
| 184 |
+
)
|
| 185 |
+
except Exception as e:
|
| 186 |
+
raise RuntimeError(f"Error uploading file {file_path}: {e}") from e
|
| 187 |
+
|
| 188 |
+
logger.info("Sharded model has been uploaded successfully!")
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def get_new_model_card(
|
| 192 |
+
original_card: ModelCard,
|
| 193 |
+
original_model_id: str,
|
| 194 |
+
gguf_files: list,
|
| 195 |
+
new_repo_url: str,
|
| 196 |
+
split_model: bool,
|
| 197 |
+
) -> ModelCard:
|
| 198 |
+
version = get_llama_cpp_version()
|
| 199 |
+
model_card = original_card.copy()
|
| 200 |
+
model_card.data.tags = (model_card.data.tags or []) + [
|
| 201 |
+
"antigma",
|
| 202 |
+
"quantize-my-repo",
|
| 203 |
+
]
|
| 204 |
+
|
| 205 |
+
# Format the table rows
|
| 206 |
+
table_rows = []
|
| 207 |
+
for file_info in gguf_files:
|
| 208 |
+
name, _, size, method = file_info
|
| 209 |
+
if split_model:
|
| 210 |
+
display_name = name[:-5]
|
| 211 |
else:
|
| 212 |
+
display_name = f"[{name}]({new_repo_url}/blob/main/{name})"
|
| 213 |
+
table_rows.append(f"{display_name}|{method}|{size:.2f} GB|{split_model}")
|
| 214 |
+
|
| 215 |
+
model_card.text = f"""
|
| 216 |
+
*Produced by [Antigma Labs](https://antigma.ai), [Antigma Quantize Space](https://huggingface.co/spaces/Antigma/quantize-my-repo)*
|
| 217 |
+
|
| 218 |
+
*Follow Antigma Labs in X [https://x.com/antigma_labs](https://x.com/antigma_labs)*
|
| 219 |
+
|
| 220 |
+
*Antigma's GitHub Homepage [https://github.com/AntigmaLabs](https://github.com/AntigmaLabs)*
|
| 221 |
+
|
| 222 |
+
## Quantization Format (GGUF)
|
| 223 |
+
We use <a href="https://github.com/ggml-org/llama.cpp">llama.cpp</a> release <a href="https://github.com/ggml-org/llama.cpp/releases/tag/{version}">{version}</a> for quantization.
|
| 224 |
+
Original model: https://huggingface.co/{original_model_id}
|
| 225 |
+
|
| 226 |
+
## Download a file (not the whole branch) from below:
|
| 227 |
+
| Filename | Quant type | File Size | Split |
|
| 228 |
+
| -------- | ---------- | --------- | ----- |
|
| 229 |
+
| {'|'.join(table_rows)}
|
| 230 |
+
|
| 231 |
+
## Original Model Card
|
| 232 |
+
{original_card.text}
|
| 233 |
+
|
| 234 |
+
## Downloading using huggingface-cli
|
| 235 |
+
<details>
|
| 236 |
+
<summary>Click to view download instructions</summary>
|
| 237 |
+
First, make sure you have hugginface-cli installed:
|
| 238 |
|
| 239 |
+
```
|
| 240 |
+
pip install -U "huggingface_hub[cli]"
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
Then, you can target the specific file you want:
|
| 244 |
+
|
| 245 |
+
```
|
| 246 |
+
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}" --local-dir ./
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
|
| 250 |
+
|
| 251 |
+
```
|
| 252 |
+
huggingface-cli download {new_repo_url} --include "{gguf_files[0][0]}/*" --local-dir ./
|
| 253 |
+
```
|
| 254 |
+
|
| 255 |
+
You can either specify a new local-dir (e.g. deepseek-ai_DeepSeek-V3-0324-Q8_0) or it will be in default hugging face cache
|
| 256 |
+
|
| 257 |
+
</details>
|
| 258 |
+
"""
|
| 259 |
+
return model_card
|
| 260 |
|
| 261 |
|
| 262 |
def process_model(
|
| 263 |
+
model_id: str,
|
| 264 |
+
q_method: str | list,
|
| 265 |
+
use_imatrix: bool,
|
| 266 |
+
imatrix_q_method: str,
|
| 267 |
+
private_repo: bool,
|
| 268 |
+
train_data_file: gr.File | None,
|
| 269 |
+
split_model: bool,
|
| 270 |
+
split_max_tensors: int,
|
| 271 |
+
split_max_size: str | None,
|
| 272 |
+
export_to_org: bool,
|
| 273 |
+
repo_owner: str,
|
| 274 |
+
org_token: str | None,
|
| 275 |
oauth_token: gr.OAuthToken | None,
|
| 276 |
+
) -> tuple[str, str]:
|
| 277 |
if oauth_token is None or oauth_token.token is None:
|
| 278 |
raise gr.Error("You must be logged in to use quantize-my-repo")
|
| 279 |
try:
|
| 280 |
whoami(oauth_token.token)
|
| 281 |
except Exception as e:
|
| 282 |
+
raise gr.Error("You must be logged in to use quantize-my-repo") from e
|
| 283 |
|
| 284 |
user_info = whoami(oauth_token.token)
|
| 285 |
username = user_info["name"]
|
|
|
|
| 289 |
|
| 290 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 291 |
logger.info(
|
| 292 |
+
"Time %s, Username %s, Model_ID %s, q_method %s",
|
| 293 |
+
current_time,
|
| 294 |
+
username,
|
| 295 |
+
model_id,
|
| 296 |
+
",".join(q_method) if isinstance(q_method, list) else q_method,
|
| 297 |
)
|
| 298 |
|
| 299 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
| 300 |
model_name = model_id.split("/")[-1]
|
| 301 |
try:
|
| 302 |
+
api_token = org_token if (export_to_org and org_token) else oauth_token.token
|
|
|
|
|
|
|
| 303 |
api = HfApi(token=api_token)
|
| 304 |
|
| 305 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
|
|
|
| 311 |
)
|
| 312 |
else "*.bin"
|
| 313 |
)
|
| 314 |
+
dl_pattern.append(pattern)
|
| 315 |
|
| 316 |
os.makedirs(downloads_dir, exist_ok=True)
|
| 317 |
os.makedirs(outputs_dir, exist_ok=True)
|
|
|
|
| 320 |
fp16 = str(Path(outdir) / f"{model_name}.fp16.gguf")
|
| 321 |
|
| 322 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
| 323 |
+
logger.info("Start download")
|
|
|
|
|
|
|
|
|
|
| 324 |
local_dir = Path(tmpdir) / model_name
|
| 325 |
api.snapshot_download(
|
| 326 |
repo_id=model_id,
|
|
|
|
| 334 |
if os.path.exists(adapter_config_dir) and not os.path.exists(
|
| 335 |
config_dir
|
| 336 |
):
|
| 337 |
+
raise RuntimeError(
|
| 338 |
"adapter_config.json is present. If converting LoRA, use GGUF-my-lora."
|
| 339 |
)
|
| 340 |
+
logger.info("Download successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
result = subprocess.run(
|
| 343 |
[
|
|
|
|
| 352 |
shell=False,
|
| 353 |
capture_output=True,
|
| 354 |
)
|
| 355 |
+
logger.info("Converted to f16")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
if result.returncode != 0:
|
| 358 |
+
raise RuntimeError(
|
| 359 |
f"Error converting to fp16: {result.stderr.decode()}"
|
| 360 |
)
|
| 361 |
shutil.rmtree(downloads_dir)
|
|
|
|
| 368 |
else "llama.cpp/groups_merged.txt"
|
| 369 |
)
|
| 370 |
if not os.path.isfile(train_data_path):
|
| 371 |
+
raise FileNotFoundError(
|
| 372 |
+
f"Training data not found: {train_data_path}"
|
| 373 |
+
)
|
| 374 |
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
| 375 |
|
| 376 |
quant_methods = (
|
|
|
|
| 382 |
|
| 383 |
gguf_files = []
|
| 384 |
for method in quant_methods:
|
| 385 |
+
logger.info("Begin quantize")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
name = (
|
| 387 |
f"{model_name.lower()}-{method.lower()}-{suffix}.gguf"
|
| 388 |
if suffix
|
|
|
|
| 403 |
)
|
| 404 |
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
| 405 |
if result.returncode != 0:
|
| 406 |
+
raise RuntimeError(
|
| 407 |
f"Quantization failed ({method}): {result.stderr.decode()}"
|
| 408 |
)
|
| 409 |
size = os.path.getsize(path) / 1024 / 1024 / 1024
|
| 410 |
gguf_files.append((name, path, size, method))
|
| 411 |
|
| 412 |
+
logger.info("Quantize successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
|
| 414 |
suffix_for_repo = (
|
| 415 |
f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
|
|
|
| 420 |
)
|
| 421 |
|
| 422 |
try:
|
| 423 |
+
original_card = ModelCard.load(model_id, token=oauth_token.token)
|
| 424 |
+
except Exception:
|
| 425 |
+
original_card = ModelCard("")
|
| 426 |
+
|
| 427 |
+
card = get_new_model_card(
|
| 428 |
+
original_card, model_id, gguf_files, new_repo_url, split_model
|
|
|
|
| 429 |
)
|
| 430 |
readme_path = Path(outdir) / "README.md"
|
| 431 |
card.save(readme_path)
|
|
|
|
| 469 |
css = """/* Custom CSS to allow scrolling */
|
| 470 |
.gradio-container {overflow-y: auto;}
|
| 471 |
"""
|
| 472 |
+
|
| 473 |
model_id = HuggingfaceHubSearch(
|
| 474 |
label="Hub Model ID",
|
| 475 |
placeholder="Search for model id on Huggingface",
|
|
|
|
| 570 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
| 571 |
api_name=False,
|
| 572 |
)
|
| 573 |
+
|
| 574 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
| 575 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
| 576 |
gr.LoginButton(min_width=250)
|