Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,197 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from PIL import Image, ImageFilter
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import torch
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
from transformers import AutoModelForImageSegmentation, DepthProImageProcessorFast, DepthProForDepthEstimation
|
| 9 |
+
import requests
|
| 10 |
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 12 |
|
| 13 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
|
| 14 |
+
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
| 15 |
+
birefnet.to('cuda')
|
| 16 |
+
birefnet.eval()
|
| 17 |
+
birefnet.half()
|
| 18 |
+
|
| 19 |
+
def extract_object(image, t1, t2):
|
| 20 |
+
# Data settings
|
| 21 |
+
image_size = (1024, 1024)
|
| 22 |
+
transform_image = transforms.Compose([
|
| 23 |
+
transforms.Resize(image_size),
|
| 24 |
+
transforms.ToTensor(),
|
| 25 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 26 |
+
])
|
| 27 |
+
|
| 28 |
+
# image = Image.open(imagepath)
|
| 29 |
+
image1 = image.copy()
|
| 30 |
+
input_images = transform_image(image1).unsqueeze(0).to('cuda').half()
|
| 31 |
+
|
| 32 |
+
# Prediction
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 35 |
+
pred = preds[0].squeeze()
|
| 36 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 37 |
+
mask = pred_pil.resize(image1.size)
|
| 38 |
+
image1.putalpha(mask)
|
| 39 |
+
|
| 40 |
+
blurredBg = cv2.GaussianBlur(np.array(imageResized), (0, 0), sigmaX=15, sigmaY=15)
|
| 41 |
+
|
| 42 |
+
mask = np.array(result[1].convert("L"))
|
| 43 |
+
_, maskBinary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
| 44 |
+
img = cv2.cvtColor(np.array(imageResized), cv2.COLOR_RGB2BGR)
|
| 45 |
+
|
| 46 |
+
maskInv = cv2.bitwise_not(maskBinary)
|
| 47 |
+
maskInv3 = cv2.cvtColor(maskInv, cv2.COLOR_GRAY2BGR)
|
| 48 |
+
|
| 49 |
+
foreground = cv2.bitwise_and(img, cv2.bitwise_not(maskInv3))
|
| 50 |
+
background = cv2.bitwise_and(blurredBg, maskInv3)
|
| 51 |
+
finalImg = cv2.add(cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB), background)
|
| 52 |
+
|
| 53 |
+
# plt.figure(figsize=(15, 5))
|
| 54 |
+
# return image1, mask
|
| 55 |
+
|
| 56 |
+
# def depth_estimation():
|
| 57 |
+
imageProcessor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
|
| 58 |
+
model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)
|
| 59 |
+
|
| 60 |
+
inputs = imageProcessor(images=imageResized, return_tensors="pt").to(device)
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
|
| 65 |
+
post_processed_output = imageProcessor.post_process_depth_estimation(
|
| 66 |
+
outputs, target_sizes=[(imageResized.height, imageResized.width)],
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
field_of_view = post_processed_output[0]["field_of_view"]
|
| 70 |
+
focal_length = post_processed_output[0]["focal_length"]
|
| 71 |
+
depth = post_processed_output[0]["predicted_depth"]
|
| 72 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min())
|
| 73 |
+
depth = depth * 255.
|
| 74 |
+
depth = depth.detach().cpu().numpy()
|
| 75 |
+
# print(depth)
|
| 76 |
+
depthImg = Image.fromarray(depth.astype("uint8"))
|
| 77 |
+
|
| 78 |
+
# threshold1 = 255 / 20 # ~85
|
| 79 |
+
# threshold2 = 2 * 255 / 3 # ~170
|
| 80 |
+
|
| 81 |
+
threshold1 = (t1/10) * 255
|
| 82 |
+
threshold2 = (t2/10) * 255
|
| 83 |
+
|
| 84 |
+
# Precompute blurred versions for each region
|
| 85 |
+
img_foreground = img.copy() # No blur for foreground
|
| 86 |
+
img_middleground = cv2.GaussianBlur(img, (0, 0), sigmaX=7, sigmaY=7)
|
| 87 |
+
img_background = cv2.GaussianBlur(img, (0, 0), sigmaX=15, sigmaY=15)
|
| 88 |
+
|
| 89 |
+
# Create masks for each region (as float arrays for proper blending)
|
| 90 |
+
mask_fg = (depth < threshold1).astype(np.float32)
|
| 91 |
+
mask_mg = ((depth >= threshold1) & (depth < threshold2)).astype(np.float32)
|
| 92 |
+
mask_bg = (depth >= threshold2).astype(np.float32)
|
| 93 |
+
|
| 94 |
+
# Expand masks to 3 channels (H, W, 3)
|
| 95 |
+
mask_fg = np.stack([mask_fg]*3, axis=-1)
|
| 96 |
+
mask_mg = np.stack([mask_mg]*3, axis=-1)
|
| 97 |
+
mask_bg = np.stack([mask_bg]*3, axis=-1)
|
| 98 |
+
|
| 99 |
+
# Combine the images using the masks in a vectorized manner.
|
| 100 |
+
final_img = (img_foreground * mask_fg +
|
| 101 |
+
img_middleground * mask_mg +
|
| 102 |
+
img_background * mask_bg).astype(np.uint8)
|
| 103 |
+
|
| 104 |
+
# Convert the result back to RGB for display with matplotlib.
|
| 105 |
+
final_img_rgb = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB)
|
| 106 |
+
|
| 107 |
+
return image1, final_img
|
| 108 |
+
|
| 109 |
+
# Visualization
|
| 110 |
+
# plt.axis("off")
|
| 111 |
+
# subplots for 3 images: original, segmented, mask
|
| 112 |
+
|
| 113 |
+
# plt.figure(figsize=(15, 5))
|
| 114 |
+
|
| 115 |
+
# image = Image.open('/content/drive/MyDrive/eee515-hw3/hw3-q24.jpg')
|
| 116 |
+
# #resize the image to 512x512
|
| 117 |
+
# imageResized = image.resize((512, 512))
|
| 118 |
+
|
| 119 |
+
# result = extract_object(birefnet, imageResized)
|
| 120 |
+
# plt.subplot(1, 3, 1)
|
| 121 |
+
# plt.title("Original Resized Image")
|
| 122 |
+
# plt.imshow(imageResized)
|
| 123 |
+
|
| 124 |
+
# plt.subplot(1, 3, 2)
|
| 125 |
+
# plt.title("Segmented Image")
|
| 126 |
+
# plt.imshow(result[0])
|
| 127 |
+
|
| 128 |
+
# plt.subplot(1, 3, 3)
|
| 129 |
+
# plt.title("Mask")
|
| 130 |
+
# plt.imshow(result[1], cmap="gray")
|
| 131 |
+
# plt.show()
|
| 132 |
+
|
| 133 |
+
# Create a Gradio interface
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def build_interface(image1, image2):
|
| 137 |
+
"""Build UI for gradio app
|
| 138 |
+
"""
|
| 139 |
+
title = "Bokeh and Lens Blur"
|
| 140 |
+
with gr.Blocks(theme=gr.themes.Soft(), title=title, fill_width=True) as interface:
|
| 141 |
+
with gr.Row():
|
| 142 |
+
# with gr.Column(scale=3):
|
| 143 |
+
# with gr.Group():
|
| 144 |
+
# input_text_box = gr.Textbox(
|
| 145 |
+
# value=None,
|
| 146 |
+
# label="Prompt",
|
| 147 |
+
# lines=2,
|
| 148 |
+
# )
|
| 149 |
+
# # gr.Markdown("### Set the values for Middleground and Background")
|
| 150 |
+
# # fg = gr.Slider(minimum=0, maximum=99, step=1, value=33, label="Middleground")
|
| 151 |
+
# # mg = gr.Slider(minimum=0, maximum=99, step=1, value=66, label="Background")
|
| 152 |
+
# with gr.Row():
|
| 153 |
+
# submit_button = gr.Button("Submit", variant="primary")
|
| 154 |
+
with gr.Column(scale=3):
|
| 155 |
+
model3d = gr.Model3D(
|
| 156 |
+
label="Output", height="45em", interactive=False
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
with gr.Column(scale=3):
|
| 160 |
+
model3d = gr.Model3D(
|
| 161 |
+
label="Output", height="45em", interactive=False
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
submit_button.click(
|
| 165 |
+
handle_text_prompt,
|
| 166 |
+
inputs=[
|
| 167 |
+
input_text_box,
|
| 168 |
+
variance
|
| 169 |
+
],
|
| 170 |
+
outputs=[
|
| 171 |
+
model3d
|
| 172 |
+
]
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
return interface
|
| 176 |
+
|
| 177 |
+
# demo = gr.Interface(sepia, gr.Image(), "image")
|
| 178 |
+
|
| 179 |
+
title = "Gaussian Blur Background App"
|
| 180 |
+
description = (
|
| 181 |
+
"Upload an image to apply a realistic background blur effect. "
|
| 182 |
+
"The app segments the foreground using RMBG-2.0 and then applies a Gaussian "
|
| 183 |
+
"blur (σ=15) to the background, simulating a video conferencing blur effect."
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
iface = gr.Interface(
|
| 187 |
+
fn=apply_blur_effect,
|
| 188 |
+
inputs=[gr.Image(type="pil", label="Input Image"), gr.Slider(minimum=0, maximum=40, step=1, value=33, label="Middleground"), gr.Slider(minimum=40, maximum=99, step=1, value=66, label="Background")],
|
| 189 |
+
outputs=[gr.Image(type="pil", label="Bokeh Image", gr.Image(type="pil", label="Lens Blur Image"))],
|
| 190 |
+
title=title,
|
| 191 |
+
description=description,
|
| 192 |
+
allow_flagging="never"
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
demo = build_interface()
|
| 196 |
+
demo.queue(default_concurrency_limit=1)
|
| 197 |
+
demo.launch()
|