Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,706 Bytes
55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b 0ccf2f0 55d584b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
"""
Test suite for Retrieval API
Tests context store operations, semantic search, and retrieval modes
"""
import pytest
import sys
import time
from pathlib import Path
from unittest.mock import Mock
sys.path.insert(0, str(Path(__file__).parent.parent))
from warbler_cda.retrieval_api import RetrievalAPI, RetrievalQuery, RetrievalMode, RetrievalResult
from warbler_cda.embeddings import EmbeddingProviderFactory
class TestRetrievalAPIContextStore:
"""Test context store operations."""
def setup_method(self):
"""Setup for each test."""
self.api = RetrievalAPI(
embedding_provider=EmbeddingProviderFactory.get_default_provider(),
config={"enable_fractalstat_hybrid": False},
)
def test_add_document(self):
"""Test adding a document to context store."""
doc_id = "doc_1"
content = "This is a test document"
metadata = {"type": "test", "source": "test_suite"}
result = self.api.add_document(doc_id, content, metadata)
assert result is True
assert self.api.get_context_store_size() == 1
def test_add_duplicate_document(self):
"""Test that duplicate documents are rejected."""
doc_id = "doc_1"
content = "Test content"
result1 = self.api.add_document(doc_id, content)
result2 = self.api.add_document(doc_id, content)
assert result1 is True
assert result2 is False
assert self.api.get_context_store_size() == 1
def test_context_store_size(self):
"""Test context store size tracking."""
initial_size = self.api.get_context_store_size()
for i in range(5):
self.api.add_document(f"doc_{i}", f"Document {i}")
final_size = self.api.get_context_store_size()
assert final_size == initial_size + 5
def test_document_with_metadata(self):
"""Test adding document with metadata."""
doc_id = "doc_meta"
content = "Document with metadata"
metadata = {"realm_type": "wisdom", "realm_label": "philosophy", "lifecycle_stage": "peak"}
self.api.add_document(doc_id, content, metadata)
assert self.api.get_context_store_size() == 1
stored_doc = self.api._context_store[doc_id]
assert stored_doc["metadata"] == metadata
class TestRetrievalQueryExecution:
"""Test retrieval query execution."""
def setup_method(self):
"""Setup for each test."""
self.api = RetrievalAPI(
embedding_provider=EmbeddingProviderFactory.get_default_provider(),
config={"enable_fractalstat_hybrid": False},
)
documents = [
("doc_1", "The quick brown fox jumps over the lazy dog", {"type": "story"}),
(
"doc_2",
"Semantic embeddings enable efficient document retrieval",
{"type": "technical"},
),
("doc_3", "Machine learning models learn from data", {"type": "technical"}),
("doc_4", "Philosophy explores fundamental questions of existence", {"type": "wisdom"}),
(
"doc_5",
"Performance optimization techniques improve application speed",
{"type": "technical"},
),
]
for doc_id, content, metadata in documents:
self.api.add_document(doc_id, content, metadata)
def test_semantic_similarity_query(self):
"""Test semantic similarity retrieval."""
query = RetrievalQuery(
query_id="test_semantic_1",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="fast animal jumps",
max_results=5,
confidence_threshold=0.3,
)
assembly = self.api.retrieve_context(query)
assert assembly is not None
assert hasattr(assembly, "results")
assert isinstance(assembly.results, list)
def test_query_with_max_results(self):
"""Test that query respects max_results parameter."""
query = RetrievalQuery(
query_id="test_limit",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="technical",
max_results=2,
confidence_threshold=0.0,
)
assembly = self.api.retrieve_context(query)
assert len(assembly.results) <= 2
def test_query_with_confidence_threshold(self):
"""Test confidence threshold filtering."""
query_high = RetrievalQuery(
query_id="test_high_confidence",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="technical embeddings",
max_results=10,
confidence_threshold=0.8,
)
query_low = RetrievalQuery(
query_id="test_low_confidence",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="technical embeddings",
max_results=10,
confidence_threshold=0.1,
)
assembly_high = self.api.retrieve_context(query_high)
assembly_low = self.api.retrieve_context(query_low)
assert len(assembly_high.results) <= len(assembly_low.results)
def test_empty_query_string(self):
"""Test behavior with empty query string."""
query = RetrievalQuery(
query_id="test_empty",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="",
max_results=5,
)
assembly = self.api.retrieve_context(query)
assert assembly is not None
def test_retrieval_result_structure(self):
"""Test that retrieval results have proper structure."""
query = RetrievalQuery(
query_id="test_structure",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="machine learning",
max_results=1,
confidence_threshold=0.0,
)
assembly = self.api.retrieve_context(query)
if assembly.results:
result = assembly.results[0]
assert isinstance(result, RetrievalResult)
assert hasattr(result, "result_id")
assert hasattr(result, "content_type")
assert hasattr(result, "content_id")
assert hasattr(result, "content")
assert hasattr(result, "relevance_score")
assert hasattr(result, "metadata")
class TestRetrievalModes:
"""Test different retrieval modes."""
def setup_method(self):
"""Setup for each test."""
self.api = RetrievalAPI(
embedding_provider=EmbeddingProviderFactory.get_default_provider(),
config={"enable_fractalstat_hybrid": False},
)
for i in range(3):
self.api.add_document(f"doc_{i}", f"Document content {i}")
def test_semantic_similarity_mode(self):
"""Test SEMANTIC_SIMILARITY retrieval mode."""
query = RetrievalQuery(
query_id="test_semantic_mode",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="document",
max_results=5,
)
assembly = self.api.retrieve_context(query)
assert assembly is not None
def test_temporal_sequence_mode(self):
"""Test TEMPORAL_SEQUENCE retrieval mode."""
current_time = time.time()
query = RetrievalQuery(
query_id="test_temporal_mode",
mode=RetrievalMode.TEMPORAL_SEQUENCE,
temporal_range=(current_time - 3600, current_time),
max_results=5,
)
assembly = self.api.retrieve_context(query)
assert assembly is not None
def test_composite_mode(self):
"""Test COMPOSITE retrieval mode."""
query = RetrievalQuery(
query_id="test_composite_mode",
mode=RetrievalMode.COMPOSITE,
semantic_query="test",
max_results=5,
)
assembly = self.api.retrieve_context(query)
assert assembly is not None
class TestRetrievalHybridScoring:
"""Test FractalStat hybrid scoring in retrieval."""
def setup_method(self):
"""Setup for each test."""
try:
from warbler_cda.embeddings.sentence_transformer_provider import (
SentenceTransformerEmbeddingProvider,
)
self.provider = SentenceTransformerEmbeddingProvider()
self.skip = False
except ImportError:
self.skip = True
self.api = RetrievalAPI(
embedding_provider=(
self.provider if not self.skip else EmbeddingProviderFactory.get_default_provider()
),
config={"enable_fractalstat_hybrid": True},
)
documents = [
("doc_1", "Semantic embeddings for retrieval", {}),
("doc_2", "Hybrid scoring with FractalStat coordinates", {}),
("doc_3", "Document ranking and relevance", {}),
]
for doc_id, content, metadata in documents:
self.api.add_document(doc_id, content, metadata)
def test_hybrid_query_with_fractalstat(self):
"""Test hybrid query with FractalStat scoring."""
if self.skip:
pytest.skip("SentenceTransformer not installed")
query = RetrievalQuery(
query_id="test_hybrid",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="semantic embeddings",
max_results=3,
fractalstat_hybrid=True,
weight_semantic=0.6,
weight_fractalstat=0.4,
)
assembly = self.api.retrieve_context(query)
assert assembly is not None
if assembly.results:
for result in assembly.results:
assert hasattr(result, "semantic_similarity")
assert hasattr(result, "fractalstat_resonance")
class TestRetrievalMetrics:
"""Test retrieval metrics and caching."""
def setup_method(self):
"""Setup for each test."""
self.api = RetrievalAPI(
embedding_provider=EmbeddingProviderFactory.get_default_provider(),
config={"enable_fractalstat_hybrid": False, "cache_ttl_seconds": 3600},
)
self.api.add_document("doc_1", "Test document one")
self.api.add_document("doc_2", "Test document two")
def test_metrics_tracking(self):
"""Test that metrics are tracked."""
query = RetrievalQuery(
query_id="test_metrics",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="test",
max_results=5,
)
self.api.retrieve_context(query)
metrics = self.api.get_retrieval_metrics()
assert "retrieval_metrics" in metrics
assert "cache_performance" in metrics
assert "context_store_size" in metrics
def test_cache_behavior(self):
"""Test query caching behavior."""
query = RetrievalQuery(
query_id="test_cache_1",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="cache",
max_results=5,
)
initial_metrics = self.api.get_retrieval_metrics()
self.api.retrieve_context(query)
self.api.retrieve_context(query)
final_metrics = self.api.get_retrieval_metrics()
assert final_metrics["retrieval_metrics"]["total_queries"] >= 2
class TestRetrievalAPIAdditionalMethods:
"""Test additional RetrievalAPI methods for better coverage."""
def setup_method(self):
"""Setup for each test."""
self.api = RetrievalAPI(
embedding_provider=EmbeddingProviderFactory.get_default_provider(),
config={"enable_fractalstat_hybrid": False},
)
# Add some test documents
self.api.add_document("doc_1", "Machine learning and AI concepts", {"category": "tech"})
self.api.add_document("doc_2", "Philosophy and wisdom traditions", {"category": "wisdom"})
self.api.add_document("doc_3", "Historical facts and events", {"category": "history"})
def test_query_semantic_anchors(self):
"""Test query_semantic_anchors convenience method."""
# Add a semantic anchor for testing
from unittest.mock import Mock
mock_anchor = Mock()
mock_anchor.concept_text = "artificial intelligence"
mock_anchor.heat = 0.8
mock_anchor.provenance.first_seen = time.time()
mock_anchor.embedding = self.api.embedding_provider.embed_text("artificial intelligence")
# Mock semantic anchors (since we don't have real ones in this test)
self.api.semantic_anchors = Mock()
self.api.semantic_anchors.anchors = {"anchor_1": mock_anchor}
results = self.api.query_semantic_anchors("artificial intelligence concepts")
# Should return list of RetrievalResult objects
assert isinstance(results, list)
if results: # May be empty if mocking doesn't work perfectly
assert all(hasattr(r, 'result_id') for r in results)
def test_get_anchor_context(self):
"""Test get_anchor_context method."""
# This method requires anchor neighborhood retrieval
# Mock semantic anchors and embedding provider
self.api.semantic_anchors = Mock()
self.api.semantic_anchors.anchors = {} # Empty for now
assembly = self.api.get_anchor_context("nonexistent_anchor")
# Should return ContextAssembly even for nonexistent anchor
assert hasattr(assembly, 'results')
assert hasattr(assembly, 'query')
def test_trace_provenance(self):
"""Test trace_provenance method."""
# Mock semantic anchors
self.api.semantic_anchors = Mock()
self.api.semantic_anchors.anchors = {}
assembly = self.api.trace_provenance("nonexistent_content")
assert hasattr(assembly, 'results')
assert hasattr(assembly, 'query')
def test_dict_to_query_conversion(self):
"""Test _dict_to_query private method."""
query_dict = {
"query_id": "dict_test",
"semantic_query": "test query",
"max_results": 10,
"confidence_threshold": 0.8,
}
query = self.api._dict_to_query(query_dict)
assert isinstance(query, RetrievalQuery)
assert query.query_id == "dict_test"
assert query.semantic_query == "test query"
def test_cache_key_generation(self):
"""Test cache key generation for queries."""
query = RetrievalQuery(
query_id="cache_test",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="cache key test",
max_results=5,
)
key1 = self.api._generate_cache_key(query)
key2 = self.api._generate_cache_key(query)
# Same query should generate same key
assert key1 == key2
assert isinstance(key1, str)
assert len(key1) > 0
def test_cache_operations(self):
"""Test cache get/set operations."""
query = RetrievalQuery(
query_id="cache_ops",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="cache operations test",
)
cache_key = self.api._generate_cache_key(query)
assembly = self.api.retrieve_context(query)
# Test cache set
self.api._cache_result(cache_key, assembly)
# Test cache get
cached = self.api._get_cached_result(cache_key)
assert cached is not None
assert cached.assembly_id == assembly.assembly_id
def test_calculate_temporal_distance_and_relevance(self):
"""Test temporal distance and relevance calculations."""
timestamp1 = time.time()
timestamp2 = timestamp1 + 3600 # 1 hour later
# Test distance calculation
distance = self.api._calculate_temporal_distance(timestamp1, timestamp2)
assert distance == 3600
# Test relevance calculation
relevance = self.api._calculate_temporal_relevance(timestamp1, timestamp2)
assert isinstance(relevance, float)
assert 0.5 < relevance < 1.0 # Should decay over time
def test_calculate_assembly_quality(self):
"""Test assembly quality calculation."""
query = RetrievalQuery(
query_id="quality_test",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="quality test",
max_results=5,
)
# Create mock results
results = [
RetrievalResult(
result_id=f"result_{i}",
content_type="context_store",
content_id=f"doc_{i}",
content=f"Content {i}",
relevance_score=0.8 + (i * 0.05),
temporal_distance=0.0,
anchor_connections=[],
provenance_depth=1,
conflict_flags=[] if i % 2 == 0 else ["conflict_1"],
metadata={},
)
for i in range(3)
]
quality = self.api._calculate_assembly_quality(results, query)
assert isinstance(quality, float)
assert 0.0 <= quality <= 1.0
def test_component_availability_check(self):
"""Test component availability checking."""
availability = self.api._check_component_availability()
expected_keys = [
"semantic_anchors", "summarization_ladder", "conflict_detector",
"embedding_provider", "fractalstat_bridge"
]
for key in expected_keys:
assert key in availability
assert isinstance(availability[key], bool)
def test_success_rate_calculation(self):
"""Test success rate calculation."""
# Initially empty metrics
rate = self.api._calculate_success_rate()
assert rate == 1.0 # No failures, no successes
# After some queries, should calculate properly
self.api.metrics["quality_distribution"] = {"high": 5, "medium": 3, "low": 1}
rate = self.api._calculate_success_rate()
assert rate == 8/9 # 8 successful (high + medium) out of 9 total
def test_average_quality_calculation(self):
"""Test average quality calculation."""
quality = self.api._calculate_average_quality()
assert quality == 0.0 # Initially empty
# With some quality data
self.api.metrics["quality_distribution"] = {"high": 2, "medium": 1, "low": 1}
quality = self.api._calculate_average_quality()
# (2*1.0 + 1*0.7 + 1*0.3) / 4 = 3.0/4 = 0.75
assert abs(quality - 0.75) < 0.01
class TestRetrievalAPIUtilityMethods:
"""Test utility methods in RetrievalAPI for comprehensive coverage."""
def setup_method(self):
"""Setup for each test."""
self.api = RetrievalAPI(config={"enable_fractalstat_hybrid": True})
def test_retrieval_modes_enum_values(self):
"""Test that all retrieval modes are properly defined."""
modes = [mode.value for mode in RetrievalMode]
expected_modes = [
"semantic_similarity", "temporal_sequence", "anchor_neighborhood",
"provenance_chain", "conflict_aware", "composite"
]
for mode in expected_modes:
assert mode in modes
def test_fractalstat_address_auto_assignment(self):
"""Test auto-assignment of FractalStat addresses."""
metadata = {
"realm_type": "wisdom",
"realm_label": "philosophy",
"lifecycle_stage": "peak",
"activity_level": 0.8,
"alignment_type": "balanced",
}
address = self.api._auto_assign_fractalstat_address("test_doc", metadata)
required_keys = ["realm", "lineage", "adjacency", "horizon", "luminosity", "polarity", "dimensionality", "alignment"]
for key in required_keys:
assert key in address
assert address["realm"]["type"] == "wisdom"
assert address["horizon"] == "scene" # peak -> scene mapping
def test_retrieval_mode_retrieval_methods(self):
"""Test that all retrieval mode methods exist and are callable."""
query = RetrievalQuery(
query_id="mode_test",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="test mode",
max_results=5,
)
# Test _retrieve_temporal_sequence method
results_temporal = self.api._retrieve_temporal_sequence(query)
assert isinstance(results_temporal, list)
# Test _retrieve_anchor_neighborhood method
results_neighborhood = self.api._retrieve_anchor_neighborhood(query)
assert isinstance(results_neighborhood, list)
# Test _retrieve_provenance_chain method
results_provenance = self.api._retrieve_provenance_chain(query)
assert isinstance(results_provenance, list)
# Test _retrieve_conflict_aware method
results_conflict = self.api._retrieve_conflict_aware(query)
assert isinstance(results_conflict, list)
# Test _retrieve_composite method
results_composite = self.api._retrieve_composite(query)
assert isinstance(results_composite, list)
def test_empty_context_assembly_creation(self):
"""Test creation of empty ContextAssembly."""
query = RetrievalQuery(
query_id="empty_test",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="empty test",
)
assembly = self.api._assemble_context(query, [])
assert assembly.assembly_id.startswith("empty_")
assert len(assembly.results) == 0
assert assembly.assembly_quality == 0.0
def test_metrics_update_functionality(self):
"""Test metrics update after retrieval."""
query = RetrievalQuery(
query_id="metrics_update_test",
mode=RetrievalMode.SEMANTIC_SIMILARITY,
semantic_query="metrics test",
)
initial_queries = self.api.metrics["total_queries"]
initial_avg_results = self.api.metrics["average_results_per_query"]
# Perform some operations
self.api.add_document("metrics_doc", "Test document for metrics")
self.api.retrieve_context(query)
# Metrics should be updated
assert self.api.metrics["total_queries"] >= initial_queries
def test_cache_efficiency_calculation(self):
"""Test cache efficiency calculation logic."""
efficiency = self.api._calculate_cache_efficiency()
# Should be between 0 and 1
assert 0.0 <= efficiency <= 1.0
# With some cache activity
self.api.metrics["cache_hits"] = 8
self.api.metrics["cache_misses"] = 2
# Manually populate cache
self.api.query_cache = {"key1": Mock(), "key2": Mock(), "key3": Mock(), "key4": Mock(), "key5": Mock()}
efficiency = self.api._calculate_cache_efficiency()
hit_rate = 8 / 10 # 80% hit rate
size_penalty = 5 / 100.0 # 0.05 penalty
expected = max(0, 0.8 - 0.05) # 0.75
assert abs(efficiency - expected) < 0.01
class TestRetrievalResultValidation:
"""Validate RetrievalResult object structure."""
def test_retrieval_result_initialization(self):
"""Test RetrievalResult proper initialization."""
result = RetrievalResult(
result_id="test_result",
content_type="context_store",
content_id="doc_123",
content="Test content",
relevance_score=0.85,
temporal_distance=3600.0,
anchor_connections=["anchor_1"],
provenance_depth=2,
conflict_flags=["conflict_type_a"],
metadata={"source": "test"},
fractalstat_resonance=0.72,
semantic_similarity=0.81,
)
assert result.result_id == "test_result"
assert result.relevance_score == 0.85
assert result.fractalstat_resonance == 0.72
assert result.semantic_similarity == 0.81
def test_retrieval_result_default_values(self):
"""Test default values in RetrievalResult."""
result = RetrievalResult(
result_id="minimal_result",
content_type="anchor",
content_id="anchor_1",
content="Minimal content",
relevance_score=0.5,
temporal_distance=0.0,
anchor_connections=[],
provenance_depth=1,
conflict_flags=[],
metadata={},
)
assert result.fractalstat_resonance == 0.0
assert result.semantic_similarity == 0.0
if __name__ == "__main__":
pytest.main([__file__, "-v"])
|