Spaces:
Runtime error
Runtime error
File size: 15,851 Bytes
ec8f374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
"""
LoRA Trainer Module
Implements Low-Rank Adaptation (LoRA) fine-tuning using HuggingFace PEFT library.
Supports 4-bit/8-bit quantization for efficient training on consumer hardware.
"""
import os
import json
from pathlib import Path
from dataclasses import dataclass, field
from typing import Optional, List, Dict, Any
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training,
PeftModel
)
from datasets import Dataset
@dataclass
class LoRAConfig:
"""LoRA configuration parameters."""
r: int = 8 # LoRA rank
lora_alpha: int = 16 # LoRA alpha (scaling factor)
target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "k_proj", "o_proj"])
lora_dropout: float = 0.05
bias: str = "none"
task_type: str = "CAUSAL_LM"
class LoRATrainer:
"""
LoRA Trainer for parameter-efficient fine-tuning of large language models.
Features:
- 4-bit/8-bit quantization support
- Automatic dataset tokenization with chat templates
- HuggingFace Trainer integration
- Checkpoint management
- Adapter merging for deployment
Example:
>>> config = LoRAConfig(r=8, lora_alpha=16)
>>> trainer = LoRATrainer("Qwen/Qwen2.5-7B-Instruct", config)
>>> trainer.load_model(use_4bit=True)
>>> trainer.prepare_dataset(training_data)
>>> trainer.train(num_epochs=3)
>>> trainer.save_model("./output")
"""
def __init__(
self,
model_name: str,
lora_config: LoRAConfig,
output_dir: str = "./models/output"
):
"""
Initialize LoRA Trainer.
Args:
model_name: HuggingFace model path or name
lora_config: LoRA configuration
output_dir: Directory for saving checkpoints and final model
"""
self.model_name = model_name
self.lora_config = lora_config
self.output_dir = Path(output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
self.model = None
self.tokenizer = None
self.train_dataset = None
self.eval_dataset = None
self.trainer = None
def load_model(
self,
use_4bit: bool = True,
use_8bit: bool = False,
device_map: str = "auto",
max_memory: Optional[Dict] = None
) -> None:
"""
Load model with LoRA adapters and optional quantization.
Args:
use_4bit: Use 4-bit quantization (bitsandbytes)
use_8bit: Use 8-bit quantization (alternative to 4-bit)
device_map: Device mapping strategy
max_memory: Maximum memory allocation per device
"""
print(f"Loading model: {self.model_name}")
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
padding_side="right"
)
# Set pad token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Quantization config
quantization_config = None
if use_4bit:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
elif use_8bit:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
# Load base model
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
device_map=device_map,
max_memory=max_memory,
trust_remote_code=True,
torch_dtype=torch.float16 if not (use_4bit or use_8bit) else None
)
# Prepare for k-bit training if quantized
if use_4bit or use_8bit:
self.model = prepare_model_for_kbit_training(self.model)
# Configure LoRA
peft_config = LoraConfig(
r=self.lora_config.r,
lora_alpha=self.lora_config.lora_alpha,
target_modules=self.lora_config.target_modules,
lora_dropout=self.lora_config.lora_dropout,
bias=self.lora_config.bias,
task_type=self.lora_config.task_type
)
# Apply LoRA adapters
self.model = get_peft_model(self.model, peft_config)
# Print trainable parameters
self.model.print_trainable_parameters()
print(f"β
Model loaded with LoRA (rank={self.lora_config.r})")
def prepare_dataset(
self,
data: List[Dict],
validation_split: float = 0.1,
max_length: int = 2048,
test_data: Optional[List[Dict]] = None
) -> None:
"""
Tokenize and prepare dataset for training.
Args:
data: Training data in format [{"instruction": "...", "input": "...", "output": "..."}]
validation_split: Fraction of data to use for validation
max_length: Maximum sequence length
test_data: Optional separate test dataset
"""
print(f"Preparing dataset: {len(data)} examples")
def format_prompt(example):
"""Format example using chat template."""
# Build conversation
messages = []
# System message (optional, can be customized)
messages.append({
"role": "system",
"content": "You are a helpful AI assistant."
})
# User message
user_content = example.get("instruction", "")
if example.get("input"):
user_content += f"\n\n{example['input']}"
messages.append({
"role": "user",
"content": user_content
})
# Assistant response
messages.append({
"role": "assistant",
"content": example.get("output", "")
})
# Apply chat template
try:
formatted = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=False
)
except Exception:
# Fallback if chat template not available
formatted = f"{user_content}\n\n{example.get('output', '')}"
return {"text": formatted}
# Format all examples
formatted_data = [format_prompt(ex) for ex in data]
# Split train/val
if test_data is None:
split_idx = int(len(formatted_data) * (1 - validation_split))
train_data = formatted_data[:split_idx]
val_data = formatted_data[split_idx:]
else:
train_data = formatted_data
val_data = [format_prompt(ex) for ex in test_data]
# Create datasets
self.train_dataset = Dataset.from_list(train_data)
self.eval_dataset = Dataset.from_list(val_data) if val_data else None
# Tokenization function
def tokenize_function(examples):
tokenized = self.tokenizer(
examples["text"],
truncation=True,
max_length=max_length,
padding="max_length",
return_tensors=None
)
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
# Tokenize
self.train_dataset = self.train_dataset.map(
tokenize_function,
batched=True,
remove_columns=self.train_dataset.column_names
)
if self.eval_dataset:
self.eval_dataset = self.eval_dataset.map(
tokenize_function,
batched=True,
remove_columns=self.eval_dataset.column_names
)
print(f"β
Dataset prepared: {len(self.train_dataset)} train, {len(self.eval_dataset) if self.eval_dataset else 0} val")
def train(
self,
num_epochs: int = 3,
learning_rate: float = 2e-4,
per_device_train_batch_size: int = 4,
per_device_eval_batch_size: int = 4,
gradient_accumulation_steps: int = 4,
warmup_steps: int = 100,
logging_steps: int = 10,
save_steps: int = 500,
eval_steps: int = 500,
fp16: bool = True,
optim: str = "paged_adamw_8bit"
) -> None:
"""
Train the model with LoRA.
Args:
num_epochs: Number of training epochs
learning_rate: Learning rate
per_device_train_batch_size: Batch size per device for training
per_device_eval_batch_size: Batch size per device for evaluation
gradient_accumulation_steps: Gradient accumulation steps
warmup_steps: Learning rate warmup steps
logging_steps: Log every N steps
save_steps: Save checkpoint every N steps
eval_steps: Evaluate every N steps
fp16: Use mixed precision training
optim: Optimizer type
"""
if self.model is None:
raise ValueError("Model not loaded. Call load_model() first.")
if self.train_dataset is None:
raise ValueError("Dataset not prepared. Call prepare_dataset() first.")
print(f"Starting training: {num_epochs} epochs")
# Training arguments
training_args = TrainingArguments(
output_dir=str(self.output_dir),
num_train_epochs=num_epochs,
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=per_device_eval_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
warmup_steps=warmup_steps,
logging_steps=logging_steps,
save_steps=save_steps,
eval_steps=eval_steps if self.eval_dataset else None,
evaluation_strategy="steps" if self.eval_dataset else "no",
save_strategy="steps",
fp16=fp16,
optim=optim,
load_best_model_at_end=True if self.eval_dataset else False,
save_total_limit=3,
report_to=[] # Disable wandb/tensorboard by default
)
# Data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer=self.tokenizer,
mlm=False
)
# Initialize trainer
self.trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
data_collator=data_collator
)
# Train
self.trainer.train()
print("β
Training complete!")
def save_model(self, save_path: Optional[str] = None) -> None:
"""
Save LoRA adapter weights.
Args:
save_path: Path to save adapters (uses output_dir if None)
"""
if save_path is None:
save_path = str(self.output_dir / "final_model")
else:
save_path = str(Path(save_path))
Path(save_path).mkdir(parents=True, exist_ok=True)
# Save adapter
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
# Save config
config_path = Path(save_path) / "lora_config.json"
with open(config_path, 'w') as f:
json.dump({
"r": self.lora_config.r,
"lora_alpha": self.lora_config.lora_alpha,
"target_modules": self.lora_config.target_modules,
"lora_dropout": self.lora_config.lora_dropout
}, f, indent=2)
print(f"β
Model saved to: {save_path}")
def load_adapter(self, adapter_path: str) -> None:
"""
Load pre-trained LoRA adapter.
Args:
adapter_path: Path to adapter weights
"""
if self.model is None:
raise ValueError("Base model not loaded. Call load_model() first.")
print(f"Loading adapter from: {adapter_path}")
self.model = PeftModel.from_pretrained(
self.model,
adapter_path,
is_trainable=True
)
print("β
Adapter loaded")
def merge_and_save(self, save_path: str) -> None:
"""
Merge LoRA weights with base model and save full model.
Args:
save_path: Path to save merged model
"""
print("Merging LoRA weights with base model...")
# Merge
merged_model = self.model.merge_and_unload()
# Save
Path(save_path).mkdir(parents=True, exist_ok=True)
merged_model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
print(f"β
Merged model saved to: {save_path}")
def evaluate_on_test_set(
self,
test_data: List[Dict],
max_samples: int = 50,
max_new_tokens: int = 256
) -> Dict[str, Any]:
"""
Evaluate model on test set.
Args:
test_data: Test examples
max_samples: Maximum number of samples to evaluate
max_new_tokens: Maximum tokens to generate
Returns:
Evaluation results dictionary
"""
import time
print(f"Evaluating on {min(len(test_data), max_samples)} test examples...")
results = {
"num_examples": min(len(test_data), max_samples),
"responses": [],
"avg_response_length": 0,
"total_time": 0,
"throughput": 0
}
self.model.eval()
start_time = time.time()
for i, example in enumerate(test_data[:max_samples]):
# Format prompt
user_content = example.get("instruction", "")
if example.get("input"):
user_content += f"\n\n{example['input']}"
messages = [{"role": "user", "content": user_content}]
try:
prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
except Exception:
prompt = user_content
# Tokenize
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=0.7,
do_sample=True,
top_p=0.9
)
# Decode
response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
results["responses"].append({
"input": user_content,
"expected": example.get("output", ""),
"generated": response
})
# Calculate metrics
results["total_time"] = time.time() - start_time
results["avg_response_length"] = sum(len(r["generated"]) for r in results["responses"]) / len(results["responses"])
results["throughput"] = len(results["responses"]) / results["total_time"]
print(f"β
Evaluation complete: {results['throughput']:.2f} examples/sec")
return results
|