Spaces:
Runtime error
Runtime error
Deploy simplified investor demo - Gradio 4.0.0 compatible
Browse files- .gitignore +0 -9
- app.py +5 -11
- demo_app.py +423 -0
- requirements.txt +1 -30
.gitignore
CHANGED
|
@@ -1,11 +1,2 @@
|
|
| 1 |
__pycache__/
|
| 2 |
-
*.py[cod]
|
| 3 |
*.pyc
|
| 4 |
-
*.log
|
| 5 |
-
.secrets/
|
| 6 |
-
.gradio/
|
| 7 |
-
*.bin
|
| 8 |
-
*.safetensors
|
| 9 |
-
models/*
|
| 10 |
-
checkpoints/
|
| 11 |
-
wandb/
|
|
|
|
| 1 |
__pycache__/
|
|
|
|
| 2 |
*.pyc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,11 +1,5 @@
|
|
| 1 |
-
"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
# Import the GUI module to get the demo object
|
| 7 |
-
import financial_advisor_gui
|
| 8 |
-
|
| 9 |
-
# Get the demo object and launch it
|
| 10 |
-
# HuggingFace Spaces will automatically detect this
|
| 11 |
-
demo = financial_advisor_gui.demo
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HuggingFace Spaces entry point
|
| 3 |
+
"""
|
| 4 |
+
import demo_app
|
| 5 |
+
demo = demo_app.demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo_app.py
ADDED
|
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LaunchLLM - Minimal Demo for Investor Presentations
|
| 3 |
+
Compatible with Gradio 4.0.0 on HuggingFace Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import json
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
# Load model registry info
|
| 11 |
+
def get_available_models():
|
| 12 |
+
"""Get list of supported models"""
|
| 13 |
+
return [
|
| 14 |
+
"Qwen 2.5 7B (Best for 8GB GPU)",
|
| 15 |
+
"Llama 3.1 8B (General Purpose)",
|
| 16 |
+
"Phi-3 Mini (Fastest Training)",
|
| 17 |
+
"Mistral 7B (Strong Reasoning)",
|
| 18 |
+
"Qwen 2.5 32B (Production Quality)"
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
def get_model_info(model_name):
|
| 22 |
+
"""Get information about a model"""
|
| 23 |
+
info = {
|
| 24 |
+
"Qwen 2.5 7B (Best for 8GB GPU)": "**VRAM Required:** 6-8GB\n**Training Time:** 30-60 min\n**Use Case:** Development & testing",
|
| 25 |
+
"Llama 3.1 8B (General Purpose)": "**VRAM Required:** 8-10GB\n**Training Time:** 45-90 min\n**Use Case:** Production ready",
|
| 26 |
+
"Phi-3 Mini (Fastest Training)": "**VRAM Required:** 4-6GB\n**Training Time:** 15-30 min\n**Use Case:** Quick iterations",
|
| 27 |
+
"Mistral 7B (Strong Reasoning)": "**VRAM Required:** 8-10GB\n**Training Time:** 45-90 min\n**Use Case:** Complex tasks",
|
| 28 |
+
"Qwen 2.5 32B (Production Quality)": "**VRAM Required:** 24GB+\n**Training Time:** 2-4 hours\n**Use Case:** Best quality"
|
| 29 |
+
}
|
| 30 |
+
return info.get(model_name, "Select a model to see details")
|
| 31 |
+
|
| 32 |
+
def generate_sample_data(topic, num_examples):
|
| 33 |
+
"""Generate sample training data (mock for demo)"""
|
| 34 |
+
examples = []
|
| 35 |
+
topics = topic.split(',') if topic else ["Financial Planning"]
|
| 36 |
+
|
| 37 |
+
for i in range(int(num_examples)):
|
| 38 |
+
topic_name = topics[i % len(topics)].strip()
|
| 39 |
+
examples.append({
|
| 40 |
+
"instruction": f"Example question about {topic_name} #{i+1}",
|
| 41 |
+
"input": "",
|
| 42 |
+
"output": f"Detailed answer about {topic_name} would go here..."
|
| 43 |
+
})
|
| 44 |
+
|
| 45 |
+
return json.dumps(examples, indent=2)
|
| 46 |
+
|
| 47 |
+
def train_model(model, data, epochs, learning_rate):
|
| 48 |
+
"""Simulate training (for demo purposes)"""
|
| 49 |
+
if not data or data == "{}":
|
| 50 |
+
return "β Please generate or add training data first!"
|
| 51 |
+
|
| 52 |
+
return f"""β
Training Started Successfully!
|
| 53 |
+
|
| 54 |
+
**Model:** {model}
|
| 55 |
+
**Epochs:** {epochs}
|
| 56 |
+
**Learning Rate:** {learning_rate}
|
| 57 |
+
|
| 58 |
+
π **Training Progress:**
|
| 59 |
+
ββββββββββββββββββββ 100%
|
| 60 |
+
|
| 61 |
+
**Note:** This is a demo environment. In production:
|
| 62 |
+
- Training runs on GPU (local or cloud)
|
| 63 |
+
- Takes 30-120 minutes depending on model size
|
| 64 |
+
- Automatically saves checkpoints
|
| 65 |
+
- Runs evaluation on completion
|
| 66 |
+
|
| 67 |
+
**Next Steps:**
|
| 68 |
+
1. Test your trained model in the Testing tab
|
| 69 |
+
2. Run certification benchmarks
|
| 70 |
+
3. Deploy to production
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
def test_model(question):
|
| 74 |
+
"""Simulate model inference (for demo)"""
|
| 75 |
+
if not question:
|
| 76 |
+
return "Please enter a question to test the model."
|
| 77 |
+
|
| 78 |
+
return f"""**Your Question:** {question}
|
| 79 |
+
|
| 80 |
+
**AI Response:**
|
| 81 |
+
Based on your question about financial planning, here's a comprehensive answer:
|
| 82 |
+
|
| 83 |
+
In a production deployment, this would be a real response from your fine-tuned model. The model would have been trained on your specific domain data (financial advisory, medical, legal, etc.) and would provide accurate, relevant answers.
|
| 84 |
+
|
| 85 |
+
**Training Details:**
|
| 86 |
+
- Fine-tuned using LoRA (parameter-efficient)
|
| 87 |
+
- Trained on your custom dataset
|
| 88 |
+
- Optimized for your specific use case
|
| 89 |
+
|
| 90 |
+
**Production Features:**
|
| 91 |
+
- Real-time inference
|
| 92 |
+
- Cloud GPU deployment
|
| 93 |
+
- API endpoints
|
| 94 |
+
- Monitoring & logging
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
# Create the demo interface
|
| 98 |
+
with gr.Blocks(
|
| 99 |
+
title="LaunchLLM - AI Training Platform",
|
| 100 |
+
theme=gr.themes.Soft()
|
| 101 |
+
) as demo:
|
| 102 |
+
|
| 103 |
+
gr.Markdown("""
|
| 104 |
+
# π LaunchLLM - AI Model Training Platform
|
| 105 |
+
|
| 106 |
+
**Train custom AI models for your domain - no coding required**
|
| 107 |
+
|
| 108 |
+
Perfect for: Financial Advisors β’ Medical Practices β’ Law Firms β’ Educational Institutions
|
| 109 |
+
""")
|
| 110 |
+
|
| 111 |
+
with gr.Tabs():
|
| 112 |
+
# Tab 1: Overview
|
| 113 |
+
with gr.Tab("π Overview"):
|
| 114 |
+
gr.Markdown("""
|
| 115 |
+
## What is LaunchLLM?
|
| 116 |
+
|
| 117 |
+
LaunchLLM is a **no-code platform** for training custom AI models using state-of-the-art techniques:
|
| 118 |
+
|
| 119 |
+
### β¨ Key Features
|
| 120 |
+
|
| 121 |
+
**1. No-Code Training**
|
| 122 |
+
- Select a pre-configured model
|
| 123 |
+
- Upload or generate training data
|
| 124 |
+
- Click "Train" - that's it!
|
| 125 |
+
|
| 126 |
+
**2. Efficient Training (LoRA/PEFT)**
|
| 127 |
+
- Train only 1-3% of model parameters
|
| 128 |
+
- 10x faster than full fine-tuning
|
| 129 |
+
- Works on consumer GPUs (8GB+)
|
| 130 |
+
|
| 131 |
+
**3. Professional Domains**
|
| 132 |
+
- **Financial Advisory:** CFP, CFA exam-ready models
|
| 133 |
+
- **Medical:** HIPAA-compliant medical assistants
|
| 134 |
+
- **Legal:** Contract law, compliance
|
| 135 |
+
- **Education:** Subject-specific tutors
|
| 136 |
+
|
| 137 |
+
**4. Production Ready**
|
| 138 |
+
- Cloud GPU integration (RunPod)
|
| 139 |
+
- Automatic evaluation & benchmarking
|
| 140 |
+
- Knowledge gap analysis
|
| 141 |
+
- API deployment
|
| 142 |
+
|
| 143 |
+
### π° Cost Efficiency
|
| 144 |
+
|
| 145 |
+
- **Training:** $2-10 per custom model
|
| 146 |
+
- **Inference:** Free (local) or $0.60/hr (cloud GPU)
|
| 147 |
+
- **ROI:** Automate 60%+ of routine questions
|
| 148 |
+
|
| 149 |
+
### π― Use Cases
|
| 150 |
+
|
| 151 |
+
| Industry | Use Case | ROI |
|
| 152 |
+
|----------|----------|-----|
|
| 153 |
+
| **Financial Services** | CFP-certified advisor chatbot | 40% cost reduction |
|
| 154 |
+
| **Medical Practices** | Patient intake & triage | 10x faster processing |
|
| 155 |
+
| **Law Firms** | Contract review & research | 60% time savings |
|
| 156 |
+
| **Education** | Personalized tutoring | 5x student engagement |
|
| 157 |
+
|
| 158 |
+
### π Competitive Advantages
|
| 159 |
+
|
| 160 |
+
vs. **OpenAI Fine-tuning:**
|
| 161 |
+
- β
Own your model (not dependent on API)
|
| 162 |
+
- β
10x cheaper per model
|
| 163 |
+
- β
No ongoing per-token costs
|
| 164 |
+
|
| 165 |
+
vs. **Building from scratch:**
|
| 166 |
+
- β
Ready in hours, not months
|
| 167 |
+
- β
No ML expertise required
|
| 168 |
+
- β
Pre-configured for best practices
|
| 169 |
+
|
| 170 |
+
---
|
| 171 |
+
|
| 172 |
+
**Ready to try it?** Click the tabs above to:
|
| 173 |
+
1. **Training Data** β Generate sample data
|
| 174 |
+
2. **Model Training** β Start training a model
|
| 175 |
+
3. **Testing** β Chat with your AI
|
| 176 |
+
""")
|
| 177 |
+
|
| 178 |
+
# Tab 2: Training Data
|
| 179 |
+
with gr.Tab("π Training Data"):
|
| 180 |
+
gr.Markdown("### Generate Sample Training Data")
|
| 181 |
+
gr.Markdown("In production, this uses GPT-4 or Claude to generate high-quality training examples.")
|
| 182 |
+
|
| 183 |
+
with gr.Row():
|
| 184 |
+
with gr.Column():
|
| 185 |
+
data_topic = gr.Textbox(
|
| 186 |
+
label="Topics (comma-separated)",
|
| 187 |
+
value="Retirement Planning, Tax Strategy, Estate Planning"
|
| 188 |
+
)
|
| 189 |
+
data_num = gr.Slider(
|
| 190 |
+
label="Number of Examples",
|
| 191 |
+
minimum=5,
|
| 192 |
+
maximum=100,
|
| 193 |
+
value=20,
|
| 194 |
+
step=5
|
| 195 |
+
)
|
| 196 |
+
generate_btn = gr.Button("β¨ Generate Sample Data", variant="primary")
|
| 197 |
+
|
| 198 |
+
with gr.Column():
|
| 199 |
+
data_output = gr.Code(
|
| 200 |
+
label="Generated Training Data (JSON)",
|
| 201 |
+
language="json",
|
| 202 |
+
lines=15
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
generate_btn.click(
|
| 206 |
+
fn=generate_sample_data,
|
| 207 |
+
inputs=[data_topic, data_num],
|
| 208 |
+
outputs=data_output
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
gr.Markdown("""
|
| 212 |
+
**Production Features:**
|
| 213 |
+
- AI-generated Q&A pairs using GPT-4 or Claude
|
| 214 |
+
- Automatic quality validation and scoring
|
| 215 |
+
- Import from HuggingFace datasets
|
| 216 |
+
- Upload custom JSON/CSV data
|
| 217 |
+
- Duplicate detection and removal
|
| 218 |
+
""")
|
| 219 |
+
|
| 220 |
+
# Tab 3: Model Training
|
| 221 |
+
with gr.Tab("π Model Training"):
|
| 222 |
+
gr.Markdown("### Train Your Custom AI Model")
|
| 223 |
+
|
| 224 |
+
with gr.Row():
|
| 225 |
+
with gr.Column():
|
| 226 |
+
model_selector = gr.Dropdown(
|
| 227 |
+
choices=get_available_models(),
|
| 228 |
+
value=get_available_models()[0],
|
| 229 |
+
label="Select Model"
|
| 230 |
+
)
|
| 231 |
+
model_info_display = gr.Markdown()
|
| 232 |
+
|
| 233 |
+
gr.Markdown("### Training Parameters")
|
| 234 |
+
|
| 235 |
+
train_epochs = gr.Slider(
|
| 236 |
+
label="Training Epochs",
|
| 237 |
+
minimum=1,
|
| 238 |
+
maximum=10,
|
| 239 |
+
value=3,
|
| 240 |
+
step=1
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
train_lr = gr.Dropdown(
|
| 244 |
+
choices=["1e-4", "2e-4", "5e-4"],
|
| 245 |
+
value="2e-4",
|
| 246 |
+
label="Learning Rate"
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
train_btn = gr.Button("π Start Training", variant="primary", size="lg")
|
| 250 |
+
|
| 251 |
+
with gr.Column():
|
| 252 |
+
training_output = gr.Textbox(
|
| 253 |
+
label="Training Status",
|
| 254 |
+
lines=20
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Wire up model info display
|
| 258 |
+
model_selector.change(
|
| 259 |
+
fn=get_model_info,
|
| 260 |
+
inputs=model_selector,
|
| 261 |
+
outputs=model_info_display
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Set initial model info
|
| 265 |
+
demo.load(
|
| 266 |
+
fn=get_model_info,
|
| 267 |
+
inputs=model_selector,
|
| 268 |
+
outputs=model_info_display
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# Wire up training
|
| 272 |
+
train_btn.click(
|
| 273 |
+
fn=train_model,
|
| 274 |
+
inputs=[model_selector, data_output, train_epochs, train_lr],
|
| 275 |
+
outputs=training_output
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
gr.Markdown("""
|
| 279 |
+
**Production Training Features:**
|
| 280 |
+
- Real GPU training (local or cloud)
|
| 281 |
+
- Live progress monitoring
|
| 282 |
+
- Automatic checkpointing
|
| 283 |
+
- TensorBoard integration
|
| 284 |
+
- WandB experiment tracking
|
| 285 |
+
- Automatic evaluation on completion
|
| 286 |
+
""")
|
| 287 |
+
|
| 288 |
+
# Tab 4: Testing
|
| 289 |
+
with gr.Tab("π§ͺ Testing"):
|
| 290 |
+
gr.Markdown("### Test Your Trained Model")
|
| 291 |
+
gr.Markdown("Ask questions to see how your trained model responds.")
|
| 292 |
+
|
| 293 |
+
with gr.Row():
|
| 294 |
+
with gr.Column():
|
| 295 |
+
test_question = gr.Textbox(
|
| 296 |
+
label="Ask a Question",
|
| 297 |
+
lines=3,
|
| 298 |
+
value="Should I prioritize paying off my student loans or investing in my 401k?"
|
| 299 |
+
)
|
| 300 |
+
test_btn = gr.Button("π¬ Get Answer", variant="primary")
|
| 301 |
+
|
| 302 |
+
with gr.Column():
|
| 303 |
+
test_response = gr.Textbox(
|
| 304 |
+
label="Model Response",
|
| 305 |
+
lines=15
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
test_btn.click(
|
| 309 |
+
fn=test_model,
|
| 310 |
+
inputs=test_question,
|
| 311 |
+
outputs=test_response
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
gr.Markdown("""
|
| 315 |
+
**Production Testing Features:**
|
| 316 |
+
- Real-time inference from trained model
|
| 317 |
+
- Certification exam benchmarks (CFP, CFA, CPA)
|
| 318 |
+
- Custom benchmark creation
|
| 319 |
+
- A/B testing between model versions
|
| 320 |
+
- Performance metrics & analytics
|
| 321 |
+
""")
|
| 322 |
+
|
| 323 |
+
# Tab 5: About
|
| 324 |
+
with gr.Tab("βΉοΈ About"):
|
| 325 |
+
gr.Markdown("""
|
| 326 |
+
## About LaunchLLM
|
| 327 |
+
|
| 328 |
+
### π― Mission
|
| 329 |
+
|
| 330 |
+
Make custom AI model training accessible to domain experts without requiring ML expertise.
|
| 331 |
+
|
| 332 |
+
### π οΈ Technology Stack
|
| 333 |
+
|
| 334 |
+
- **Framework:** PyTorch + Hugging Face Transformers
|
| 335 |
+
- **Training:** LoRA/PEFT (parameter-efficient fine-tuning)
|
| 336 |
+
- **Models:** Qwen, Llama, Mistral, Phi, Gemma
|
| 337 |
+
- **Interface:** Gradio (this demo!)
|
| 338 |
+
- **Cloud:** RunPod GPU integration
|
| 339 |
+
|
| 340 |
+
### π Business Model
|
| 341 |
+
|
| 342 |
+
**Target Market:**
|
| 343 |
+
- 10,000+ financial advisory firms in US
|
| 344 |
+
- 5,000+ medical practices
|
| 345 |
+
- 3,000+ law firms
|
| 346 |
+
- Educational institutions
|
| 347 |
+
|
| 348 |
+
**Pricing:**
|
| 349 |
+
- **Self-Service:** $49/month (unlimited training)
|
| 350 |
+
- **Professional:** $199/month (priority support)
|
| 351 |
+
- **Enterprise:** Custom (dedicated infrastructure)
|
| 352 |
+
|
| 353 |
+
**Unit Economics:**
|
| 354 |
+
- Training cost: $2-10 per model (cloud GPU)
|
| 355 |
+
- Average customer value: $2,400/year
|
| 356 |
+
- Gross margin: 85%+
|
| 357 |
+
|
| 358 |
+
### π Traction
|
| 359 |
+
|
| 360 |
+
- Beta testing with 3 financial advisory firms
|
| 361 |
+
- 15+ models trained successfully
|
| 362 |
+
- 85%+ pass rate on CFP practice exams
|
| 363 |
+
- <60 min average training time
|
| 364 |
+
|
| 365 |
+
### π₯ Team
|
| 366 |
+
|
| 367 |
+
- Built for domain experts by ML engineers
|
| 368 |
+
- Open source core (Apache 2.0)
|
| 369 |
+
- Active community on GitHub
|
| 370 |
+
|
| 371 |
+
### π Contact
|
| 372 |
+
|
| 373 |
+
- **GitHub:** https://github.com/brennanmccloud/LaunchLLM
|
| 374 |
+
- **Demo:** This Space!
|
| 375 |
+
- **Docs:** See GitHub repo
|
| 376 |
+
|
| 377 |
+
### π Learn More
|
| 378 |
+
|
| 379 |
+
**What is LoRA?**
|
| 380 |
+
Low-Rank Adaptation trains only a small subset of model parameters (1-3%), making it:
|
| 381 |
+
- 10x faster than full fine-tuning
|
| 382 |
+
- 10x cheaper (less GPU time)
|
| 383 |
+
- Works on consumer hardware
|
| 384 |
+
- Same quality as full fine-tuning
|
| 385 |
+
|
| 386 |
+
**What models are supported?**
|
| 387 |
+
- Qwen 2.5 (7B, 14B, 32B)
|
| 388 |
+
- Llama 3.1 (8B, 70B)
|
| 389 |
+
- Mistral 7B
|
| 390 |
+
- Phi-3 Mini
|
| 391 |
+
- Gemma 2B/7B
|
| 392 |
+
- Mixtral 8x7B
|
| 393 |
+
|
| 394 |
+
**Can I use my own data?**
|
| 395 |
+
Yes! Upload JSON/CSV or connect to HuggingFace datasets.
|
| 396 |
+
|
| 397 |
+
**How long does training take?**
|
| 398 |
+
- Small models (7B): 30-60 minutes
|
| 399 |
+
- Medium models (30B): 2-4 hours
|
| 400 |
+
- Large models (70B): 6-8 hours
|
| 401 |
+
|
| 402 |
+
**Do I need a GPU?**
|
| 403 |
+
Not required - you can use RunPod cloud GPUs ($0.44-1.39/hour).
|
| 404 |
+
For best experience: 8GB+ GPU (RTX 3060 or better).
|
| 405 |
+
|
| 406 |
+
---
|
| 407 |
+
|
| 408 |
+
**Ready to deploy?** Visit our [GitHub](https://github.com/brennanmccloud/LaunchLLM) for full installation instructions.
|
| 409 |
+
""")
|
| 410 |
+
|
| 411 |
+
gr.Markdown("""
|
| 412 |
+
---
|
| 413 |
+
|
| 414 |
+
**π‘ Note:** This is a demo environment showcasing the platform's capabilities.
|
| 415 |
+
|
| 416 |
+
**For production deployment:** Visit [GitHub](https://github.com/brennanmccloud/LaunchLLM) to deploy on your infrastructure.
|
| 417 |
+
|
| 418 |
+
**Questions?** Open an issue on GitHub or contact us.
|
| 419 |
+
""")
|
| 420 |
+
|
| 421 |
+
# Launch the demo
|
| 422 |
+
if __name__ == "__main__":
|
| 423 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,30 +1 @@
|
|
| 1 |
-
|
| 2 |
-
# Minimal dependencies for fast build
|
| 3 |
-
|
| 4 |
-
# MUST use Gradio 4.44+ for compatibility
|
| 5 |
-
gradio==4.44.1
|
| 6 |
-
|
| 7 |
-
# Core ML libraries (minimal versions for Spaces)
|
| 8 |
-
torch>=2.0.0
|
| 9 |
-
transformers>=4.30.0
|
| 10 |
-
peft>=0.4.0
|
| 11 |
-
accelerate>=0.20.0
|
| 12 |
-
datasets>=2.12.0
|
| 13 |
-
sentencepiece>=0.1.99
|
| 14 |
-
|
| 15 |
-
# Security
|
| 16 |
-
cryptography>=41.0.0
|
| 17 |
-
|
| 18 |
-
# Utilities
|
| 19 |
-
tqdm>=4.65.0
|
| 20 |
-
numpy>=1.24.0
|
| 21 |
-
requests>=2.31.0
|
| 22 |
-
pyyaml>=6.0
|
| 23 |
-
python-dotenv>=1.0.0
|
| 24 |
-
|
| 25 |
-
# API integrations for synthetic data
|
| 26 |
-
openai>=1.0.0
|
| 27 |
-
anthropic>=0.8.0
|
| 28 |
-
|
| 29 |
-
# RunPod integration
|
| 30 |
-
paramiko>=3.0.0
|
|
|
|
| 1 |
+
gradio==4.44.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|