File size: 46,339 Bytes
4e6d880
 
 
 
 
 
 
 
 
 
 
 
a1986d7
4e6d880
 
 
 
 
 
8a7d04a
 
4b2359f
9a54a21
4b2359f
 
4e6d880
 
 
 
 
 
 
9a54a21
0c91d86
9a54a21
 
4e6d880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe9e63c
 
 
 
4e6d880
 
 
 
fe5fd85
 
4e6d880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417ea6c
4e6d880
 
 
 
 
 
 
 
417ea6c
 
 
 
 
 
4e6d880
fe9e63c
4e6d880
 
 
 
 
 
 
 
 
fe9e63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a54a21
 
fe9e63c
9a54a21
fe9e63c
 
 
9a54a21
 
fe9e63c
9a54a21
fe9e63c
 
 
 
 
 
9a54a21
 
 
fe9e63c
 
 
 
 
 
 
 
 
 
 
fe5fd85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe9e63c
4e6d880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7d04a
 
 
 
9a54a21
 
 
 
8a7d04a
 
9a54a21
 
 
4e6d880
8a7d04a
4e6d880
 
9a54a21
 
 
 
8a7d04a
 
9a54a21
 
 
4e6d880
8a7d04a
4e6d880
 
 
417ea6c
 
 
4e6d880
 
417ea6c
4e6d880
 
 
 
 
 
fe9e63c
 
4b2359f
 
 
9a54a21
 
 
ba2a182
9a54a21
ba2a182
fe9e63c
 
 
9a54a21
ba2a182
fe9e63c
9a54a21
fe9e63c
 
 
 
 
4b2359f
fe9e63c
 
 
 
 
 
 
 
 
 
417ea6c
4e6d880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8098d9b
 
 
4e6d880
 
 
8098d9b
 
4e6d880
 
8098d9b
4e6d880
8098d9b
 
 
 
4e6d880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b98ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e6d880
4b2359f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7bbf7a
4b2359f
 
 
 
548a99d
25dc238
548a99d
b7bbf7a
548a99d
 
 
 
 
 
b7bbf7a
548a99d
b7bbf7a
 
 
548a99d
 
 
 
 
 
b7bbf7a
548a99d
 
 
baf3000
548a99d
 
 
 
 
 
baf3000
548a99d
 
 
25dc238
548a99d
 
 
 
 
25dc238
548a99d
b7bbf7a
 
 
548a99d
 
 
 
 
b7bbf7a
548a99d
b7bbf7a
 
 
548a99d
 
 
 
b7bbf7a
548a99d
b7bbf7a
 
4b2359f
b7bbf7a
 
4b2359f
 
 
b7bbf7a
 
4b2359f
 
 
 
 
 
 
 
 
 
ba2a182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a54a21
a1986d7
9a54a21
a1986d7
 
9a54a21
 
 
 
a1986d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a54a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e58a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a54a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e58a7
 
 
 
 
 
 
 
 
 
 
9a54a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e6d880
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
"""
Enhanced WebSocket Handler with Groq ASR integration
Based on friend's superior implementation with /ws/stream endpoint
Provides real-time voice processing with superior transcription accuracy
"""

import logging
import json
import asyncio
import tempfile
import os
import time
import re
from typing import Dict, Any, Optional
from pathlib import Path
import uuid

from fastapi import WebSocket, WebSocketDisconnect
from groq_voice_service import groq_voice_service
from rag_service import search_documents_async
from hybrid_llm_service import HybridLLMService
from policy_chart_generator import PolicyChartGenerator
from rajasthan_formatter import rajasthan_formatter
import base64
import io

logger = logging.getLogger("voicebot")

class GroqWebSocketHandler:
    def __init__(self):
        self.active_connections: Dict[str, WebSocket] = {}
        self.user_sessions: Dict[str, Dict] = {}
        self.hybrid_llm = HybridLLMService()
        self.llm_service = self.hybrid_llm  # Add alias for compatibility
        self.chart_generator = PolicyChartGenerator()
        self.rajasthan_formatter = rajasthan_formatter
        
    async def connect(self, websocket: WebSocket, session_id: str = None):
        """Accept WebSocket connection and initialize session"""
        await websocket.accept()
        
        if not session_id:
            session_id = str(uuid.uuid4())
        
        self.active_connections[session_id] = websocket
        self.user_sessions[session_id] = {
            "connected_at": time.time(),
            "message_count": 0,
            "last_activity": time.time(),
            "conversation_history": []
        }
        
        logger.info(f"🔗 WebSocket connected - Session: {session_id}")
        
        # Send initial connection confirmation
        await self.send_message(session_id, {
            "type": "connection_established",
            "session_id": session_id,
            "voice_status": groq_voice_service.get_voice_status(),
            "timestamp": time.time()
        })
        
        return session_id

    async def disconnect(self, session_id: str):
        """Handle WebSocket disconnection"""
        if session_id in self.active_connections:
            del self.active_connections[session_id]
        if session_id in self.user_sessions:
            session_duration = time.time() - self.user_sessions[session_id]["connected_at"]
            message_count = self.user_sessions[session_id]["message_count"]
            logger.info(f"🔌 Session {session_id} ended - Duration: {session_duration:.1f}s, Messages: {message_count}")
            del self.user_sessions[session_id]

    async def send_message(self, session_id: str, message: Dict[str, Any]):
        """Send message to specific WebSocket connection"""
        if session_id in self.active_connections:
            try:
                await self.active_connections[session_id].send_text(json.dumps(message))
                return True
            except Exception as e:
                logger.error(f"❌ Failed to send message to {session_id}: {e}")
                return False
        return False

    async def handle_stream_message(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """
        Handle streaming messages from /ws/stream endpoint
        Processes audio data with Groq ASR for superior transcription
        """
        try:
            message_type = message.get("type", "unknown")
            
            if message_type == "audio_data":
                await self._process_audio_stream(websocket, session_id, message)
            elif message_type == "text_query":
                await self._process_text_query(websocket, session_id, message)
            elif message_type == "voice_message":
                await self._process_voice_message(websocket, session_id, message)
            elif message_type == "connection":
                await self._handle_connection_message(websocket, session_id, message)
            elif message_type == "conversation_state":
                await self._handle_conversation_state(websocket, session_id, message)
            elif message_type == "voice_settings":
                await self._handle_voice_settings(websocket, session_id, message)
            elif message_type == "get_knowledge_bases":
                await self._handle_get_knowledge_bases(websocket, session_id, message)
            else:
                logger.warning(f"⚠️ Unknown message type: {message_type}")
                await self.send_message(session_id, {
                    "type": "error",
                    "message": f"Unknown message type: {message_type}",
                    "timestamp": time.time()
                })
                
        except Exception as e:
            logger.error(f"❌ Error handling stream message: {e}")
            await self.send_message(session_id, {
                "type": "error",
                "message": f"Internal error: {str(e)}",
                "timestamp": time.time()
            })

    async def _process_audio_stream(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """
        Process streaming audio data with Groq ASR
        Provides superior transcription accuracy compared to Whisper
        """
        try:
            # Send processing acknowledgment
            await self.send_message(session_id, {
                "type": "audio_processing_started",
                "timestamp": time.time()
            })
            
            # Extract audio data
            audio_data = message.get("audio_data")
            user_language = message.get("language", "en")
            
            if not audio_data:
                await self.send_message(session_id, {
                    "type": "error",
                    "message": "No audio data provided",
                    "timestamp": time.time()
                })
                return
            
            # Decode base64 audio data
            import base64
            try:
                audio_bytes = base64.b64decode(audio_data)
            except Exception as decode_error:
                logger.error(f"❌ Audio decode error: {decode_error}")
                await self.send_message(session_id, {
                    "type": "error",
                    "message": "Invalid audio data format",
                    "timestamp": time.time()
                })
                return
            
            # Use Groq ASR for superior transcription
            logger.info(f"🎤 Processing audio with Groq ASR - Language: {user_language}")
            transcription_start = time.time()
            
            transcribed_text = await groq_voice_service.groq_asr_bytes(audio_bytes, user_language)
            
            transcription_time = time.time() - transcription_start
            logger.info(f"🎤 Groq ASR completed in {transcription_time:.2f}s")
            
            if not transcribed_text:
                await self.send_message(session_id, {
                    "type": "transcription_failed",
                    "message": "Could not transcribe audio",
                    "timestamp": time.time()
                })
                return
            
            # Send transcription result (both formats for compatibility)
            await self.send_message(session_id, {
                "type": "transcription_complete",
                "transcribed_text": transcribed_text,
                "processing_time": transcription_time,
                "language": user_language,
                "timestamp": time.time()
            })
            
            # Also send friend's format
            await self.send_message(session_id, {
                "type": "transcription",
                "text": transcribed_text
            })
            
            # Process the transcribed query
            await self._process_transcribed_query(websocket, session_id, transcribed_text, user_language, client_type="voice")
            
        except Exception as e:
            logger.error(f"❌ Audio processing error: {e}")
            await self.send_message(session_id, {
                "type": "error",
                "message": f"Audio processing failed: {str(e)}",
                "timestamp": time.time()
            })

    async def _process_voice_message(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """Process voice message with direct transcription (for text clients)"""
        try:
            transcription = message.get("transcription", "")
            client_type = message.get("client_type", "voice")
            language = message.get("lang", "english")
            
            # Check session data for client type override
            if session_id in self.user_sessions:
                stored_client_type = self.user_sessions[session_id].get("client_type")
                if stored_client_type:
                    client_type = stored_client_type
            
            if not transcription:
                await self.send_message(session_id, {
                    "type": "error",
                    "message": "No transcription provided",
                    "timestamp": time.time()
                })
                return
                
            logger.info(f"💬 Processing voice message from {client_type} client: {transcription}")
            
            # Process the query (same as transcribed query)
            await self._process_transcribed_query(websocket, session_id, transcription, 
                                                language, client_type=client_type)
            
        except Exception as e:
            logger.error(f"❌ Voice message processing error: {e}")
            await self.send_message(session_id, {
                "type": "error",
                "message": f"Voice message processing failed: {str(e)}",
                "timestamp": time.time()
            })

    async def _handle_connection_message(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """Handle connection message to store client preferences"""
        try:
            client_type = message.get("client_type", "voice")
            knowledge_base = message.get("knowledge_base", "government_docs")
            user_role = message.get("user_role", "citizen")  # Rajasthan Rule Assistant role
            language_preference = message.get("language_preference", "hindi")  # Language preference
            
            # Update session data with client preferences
            if session_id in self.user_sessions:
                self.user_sessions[session_id]["client_type"] = client_type
                self.user_sessions[session_id]["knowledge_base"] = knowledge_base
                self.user_sessions[session_id]["user_role"] = user_role
                self.user_sessions[session_id]["language_preference"] = language_preference
                
            logger.info(f"🔗 Rajasthan Rule Assistant session: {client_type}, Role: {user_role}, Language: {language_preference}")
            
            # Send confirmation
            await self.send_message(session_id, {
                "type": "connection_confirmed",
                "client_type": client_type,
                "knowledge_base": knowledge_base,
                "user_role": user_role,
                "language_preference": language_preference,
                "assistant_name": "राजस्थान नियम सहायक / Rajasthan Rule Assistant",
                "timestamp": time.time()
            })
            
        except Exception as e:
            logger.error(f"❌ Connection message handling error: {e}")
            await self.send_message(session_id, {
                "type": "error",
                "message": f"Connection setup failed: {str(e)}",
                "timestamp": time.time()
            })

    async def _handle_get_knowledge_bases(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """Handle request for available knowledge bases"""
        try:
            # Return available knowledge bases
            knowledge_bases = [
                {
                    "id": "government_docs",
                    "name": "Government Documents",
                    "description": "Official government policies, procedures, and regulations"
                },
                {
                    "id": "pension_rules",
                    "name": "Pension Rules",
                    "description": "Comprehensive pension guidelines and calculations"
                }
            ]
            
            await self.send_message(session_id, {
                "type": "knowledge_bases",
                "data": knowledge_bases,
                "timestamp": time.time()
            })
            
        except Exception as e:
            logger.error(f"❌ Knowledge bases request error: {e}")
            await self.send_message(session_id, {
                "type": "error",
                "message": f"Failed to get knowledge bases: {str(e)}",
                "timestamp": time.time()
            })

    async def _process_transcribed_query(self, websocket: WebSocket, session_id: str, query: str, language: str = "en", client_type: str = "voice"):
        """Process transcribed query and generate response"""
        try:
            # Update session activity
            if session_id in self.user_sessions:
                self.user_sessions[session_id]["last_activity"] = time.time()
                self.user_sessions[session_id]["message_count"] += 1
                self.user_sessions[session_id]["conversation_history"].append({
                    "type": "user_voice",
                    "content": query,
                    "timestamp": time.time(),
                    "language": language
                })
            
            # Send query processing started
            await self.send_message(session_id, {
                "type": "query_processing_started",
                "query": query,
                "timestamp": time.time()
            })
            
            # Analyze query context for better response routing
            query_context = await self._analyze_query_context(query)
            
            # Send context analysis
            await self.send_message(session_id, {
                "type": "query_analysis",
                "context": query_context,
                "timestamp": time.time()
            })
            
            # Process with RAG service
            processing_start = time.time()
            
            if query_context["requires_documents"]:
                logger.info(f"📄 Document search required for: {query}")
                # Get relevant documents
                documents = await search_documents_async(query, limit=3)
                context = "\n".join([doc.get("content", "") for doc in documents])
                
                # Get session context for role-based and language-aware responses
                session_context = self._get_session_context(session_id)
                
                # Generate response with context and session preferences
                response_text = await self.llm_service.get_response(
                    message=query,
                    context=context,
                    user_role=session_context.get("user_role", "citizen"),
                    language_preference=session_context.get("language_preference", "hindi")
                )
                response_data = {"response": response_text}
            else:
                logger.info(f"💬 General query: {query}")
                # Get session context for role-based and language-aware responses
                session_context = self._get_session_context(session_id)
                
                # Generate simple response without documents but with session preferences
                response_text = await self.llm_service.get_response(
                    message=query,
                    context="",
                    user_role=session_context.get("user_role", "citizen"),
                    language_preference=session_context.get("language_preference", "hindi")
                )
                response_data = {"response": response_text}
            
            processing_time = time.time() - processing_start
            
            # Send response (both formats for compatibility)
            response_text = response_data.get("response", "I couldn't generate a response.")
            
            await self.send_message(session_id, {
                "type": "response_complete",
                "response": response_text,
                "sources": response_data.get("sources", []),
                "processing_time": processing_time,
                "query_context": query_context,
                "timestamp": time.time()
            })
            
            # Send different response formats based on client type
            if client_type == "text":
                # Generate charts for impact analysis queries
                charts = await self._generate_charts_if_needed(query, response_text)
                
                # Apply Rajasthan government formatting
                formatted_response = self._apply_rajasthan_formatting(query, response_text)
                
                # Create intelligent summary based on query type
                summary = self._create_intelligent_summary(query, formatted_response)
                
                # For text clients, send structured response
                await self.send_message(session_id, {
                    "type": "streaming_response",
                    "clause_text": formatted_response,
                    "summary": summary,
                    "role_checklist": [],
                    "source_title": "राजस्थान नियम सहायक / Rajasthan Rule Assistant",
                    "clause_id": f"response_{int(time.time())}",
                    "date": time.strftime("%Y-%m-%d"),
                    "url": "",
                    "score": 1.0,
                    "scenario_analysis": None,
                    "charts": charts
                })
            else:
                # For voice clients, send friend's format
                await self.send_message(session_id, {
                    "type": "llm_response",
                    "text": response_text
                })
                
                # Generate TTS audio response (like friend's backend)
                await self._generate_audio_response(session_id, response_text)
            
            # Update conversation history
            if session_id in self.user_sessions:
                self.user_sessions[session_id]["conversation_history"].append({
                    "type": "assistant",
                    "content": response_data.get("response", ""),
                    "sources": response_data.get("sources", []),
                    "timestamp": time.time()
                })
            
        except Exception as e:
            logger.error(f"❌ Query processing error: {e}")
            await self.send_message(session_id, {
                "type": "error",
                "message": f"Query processing failed: {str(e)}",
                "timestamp": time.time()
            })

    async def _process_text_query(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """Process text-based query"""
        query = message.get("query", "").strip()
        language = message.get("language", "en")
        
        if not query:
            await self.send_message(session_id, {
                "type": "error",
                "message": "Empty query provided",
                "timestamp": time.time()
            })
            return
        
        await self._process_transcribed_query(websocket, session_id, query, language)

    async def _analyze_query_context(self, query: str) -> Dict[str, Any]:
        """
        Analyze query to determine context and routing
        Enhanced logic to prioritize document search over generic responses
        """
        query_lower = query.lower().strip()
        
        # Government/pension related keywords that should trigger document search
        govt_keywords = [
            "pension", "retirement", "pf", "provident fund", "gratuity", "benefits",
            "government", "policy", "rules", "regulation", "scheme", "allowance",
            "service", "employee", "officer", "department", "ministry", "board",
            "application", "form", "procedure", "process", "eligibility", "criteria",
            "amount", "calculation", "rate", "percentage", "salary", "pay",
            "medical", "health", "insurance", "coverage", "reimbursement",
            "leave", "vacation", "sick", "maternity", "paternity",
            "transfer", "posting", "promotion", "increment", "grade",
            "tax", "income", "deduction", "exemption", "investment",
            "documents", "certificate", "verification", "approval"
        ]
        
        # Simple greetings and casual queries
        casual_queries = [
            "hello", "hi", "hey", "good morning", "good afternoon", "good evening",
            "how are you", "what's up", "thanks", "thank you", "bye", "goodbye",
            "what is your name", "who are you", "what can you do"
        ]
        
        # Check for casual queries first
        if any(casual in query_lower for casual in casual_queries):
            return {
                "requires_documents": False,
                "query_type": "casual",
                "confidence": 0.9,
                "reason": "Casual greeting or simple query"
            }
        
        # Check for government/pension keywords
        matched_keywords = [kw for kw in govt_keywords if kw in query_lower]
        
        if matched_keywords:
            return {
                "requires_documents": True,
                "query_type": "government_policy",
                "confidence": 0.8,
                "matched_keywords": matched_keywords,
                "reason": f"Contains government/policy keywords: {', '.join(matched_keywords)}"
            }
        
        # Default: ALWAYS search documents for non-casual queries
        # This is a pension/government assistant, so most queries should search documents
        if len(query.split()) >= 2:  # Multi-word queries likely need document search
            return {
                "requires_documents": True,
                "query_type": "information_request",
                "confidence": 0.7,
                "reason": "Multi-word query - defaulting to document search for better accuracy"
            }
        
        # Even single-word queries should search documents (unless they're greetings)
        return {
            "requires_documents": True,
            "query_type": "general_info",
            "confidence": 0.6,
            "reason": "Defaulting to document search - this is a government rule assistant"
        }

    async def _generate_audio_response(self, websocket: WebSocket, session_id: str, text: str):
        """Generate TTS audio for response"""
        try:
            await self.send_message(session_id, {
                "type": "audio_generation_started",
                "timestamp": time.time()
            })
            
            audio_data = await groq_voice_service.text_to_speech(text)
            
            if audio_data:
                import base64
                audio_base64 = base64.b64encode(audio_data).decode('utf-8')
                
                await self.send_message(session_id, {
                    "type": "audio_response",
                    "audio_data": audio_base64,
                    "text": text,
                    "timestamp": time.time()
                })
            else:
                await self.send_message(session_id, {
                    "type": "audio_generation_failed",
                    "message": "Could not generate audio",
                    "timestamp": time.time()
                })
                
        except Exception as e:
            logger.error(f"❌ Audio generation error: {e}")
            await self.send_message(session_id, {
                "type": "error",
                "message": f"Audio generation failed: {str(e)}",
                "timestamp": time.time()
            })

    async def _handle_conversation_state(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """Handle conversation state updates"""
        action = message.get("action", "")
        
        if action == "get_history":
            history = self.user_sessions.get(session_id, {}).get("conversation_history", [])
            await self.send_message(session_id, {
                "type": "conversation_history",
                "history": history,
                "timestamp": time.time()
            })
        elif action == "clear_history":
            if session_id in self.user_sessions:
                self.user_sessions[session_id]["conversation_history"] = []
            await self.send_message(session_id, {
                "type": "history_cleared",
                "timestamp": time.time()
            })

    async def _handle_voice_settings(self, websocket: WebSocket, session_id: str, message: Dict[str, Any]):
        """Handle voice settings updates"""
        settings = message.get("settings", {})
        
        # Update session-specific settings if needed
        if session_id in self.user_sessions:
            self.user_sessions[session_id]["voice_settings"] = settings
        
        await self.send_message(session_id, {
            "type": "voice_settings_updated",
            "settings": settings,
            "timestamp": time.time()
        })

    def get_session_info(self, session_id: str) -> Optional[Dict[str, Any]]:
        """Get session information"""
        if session_id in self.user_sessions:
            session = self.user_sessions[session_id].copy()
            session["session_id"] = session_id
            session["is_active"] = session_id in self.active_connections
            return session
        return None

    def get_active_sessions_count(self) -> int:
        """Get number of active sessions"""
        return len(self.active_connections)
    
    async def _generate_audio_response(self, session_id: str, text: str):
        """Generate TTS audio and send to client (like friend's backend)"""
        try:
            logger.info(f"🔊 Generating TTS for: {text[:50]}...")
            
            # Send TTS start notification (friend's format)
            await self.send_message(session_id, {"type": "tts_start"})
            
            # Generate audio using groq_voice_service
            audio_bytes = await groq_voice_service.text_to_speech(text)
            
            if audio_bytes:
                logger.info(f"🎵 Generated {len(audio_bytes)} bytes of audio")
                
                # Send audio bytes directly (like friend's backend)
                if session_id in self.active_connections:
                    websocket = self.active_connections[session_id]
                    await websocket.send_bytes(audio_bytes)
                    logger.info("🔊 Audio sent to client")
                
                # Send TTS end notification
                await self.send_message(session_id, {"type": "tts_end"})
            else:
                logger.warning("⚠️ No audio generated from TTS")
                await self.send_message(session_id, {
                    "type": "tts_error", 
                    "message": "Could not generate audio"
                })
                
        except Exception as e:
            logger.error(f"❌ TTS generation failed: {e}")
            await self.send_message(session_id, {
                "type": "tts_error", 
                "message": f"Audio generation failed: {str(e)}"
            })

    async def _generate_charts_if_needed(self, query: str, response_text: str) -> list:
        """Generate charts for impact analysis and scenario questions"""
        try:
            query_lower = query.lower()
            charts = []
            
            # Keywords that indicate need for charts
            chart_keywords = [
                'impact', 'effect', 'scenario', 'analyze', 'compare', 
                'chart', 'graph', 'visual', 'breakdown', 'yearly',
                'projection', 'forecast', 'increment'
            ]
            
            # Check if query needs charts
            needs_charts = any(keyword in query_lower for keyword in chart_keywords)
            
            if not needs_charts:
                return []
            
            logger.info(f"📊 Analyzing query for relevant chart: {query}")
            
            # Initialize chart generator
            chart_gen = PolicyChartGenerator()
            
            # Analyze query to determine what kind of impact to show - FIXED LOGIC
            if 'impact' in query_lower and 'pension' in query_lower and ('rule' in query_lower or 'policy' in query_lower):
                # For pension rule/policy IMPACT queries - HIGHEST PRIORITY
                chart_data = [
                    {'year': 2019, 'impact': 145, 'affected_beneficiaries': 45000}, 
                    {'year': 2020, 'impact': 185, 'affected_beneficiaries': 52000},
                    {'year': 2021, 'impact': 225, 'affected_beneficiaries': 58000}, 
                    {'year': 2022, 'impact': 280, 'affected_beneficiaries': 65000},
                    {'year': 2023, 'impact': 340, 'affected_beneficiaries': 72000}, 
                    {'year': 2024, 'impact': 420, 'affected_beneficiaries': 80000}
                ]
                chart_title = "Pension Policy Impact - Annual Budget (₹ Crores)"
            elif 'increment' in query_lower or 'increase' in query_lower:
                # For increment queries, show increment progression
                chart_data = [
                    {'year': 2019, 'impact': 50, 'affected_beneficiaries': 25000}, 
                    {'year': 2020, 'impact': 52.5, 'affected_beneficiaries': 26500},
                    {'year': 2021, 'impact': 55, 'affected_beneficiaries': 28000}, 
                    {'year': 2022, 'impact': 58, 'affected_beneficiaries': 30000},
                    {'year': 2023, 'impact': 61, 'affected_beneficiaries': 32000}, 
                    {'year': 2024, 'impact': 64, 'affected_beneficiaries': 34000}
                ]
                chart_title = "Pension Increment Trend (₹ Crores)"
            elif 'impact' in query_lower and 'pension' in query_lower:
                # For general pension impact queries, show actual financial impact
                chart_data = [
                    {'year': 2019, 'impact': 125, 'affected_beneficiaries': 35000}, 
                    {'year': 2020, 'impact': 148, 'affected_beneficiaries': 38000},
                    {'year': 2021, 'impact': 172, 'affected_beneficiaries': 42000}, 
                    {'year': 2022, 'impact': 198, 'affected_beneficiaries': 46000},
                    {'year': 2023, 'impact': 225, 'affected_beneficiaries': 50000}, 
                    {'year': 2024, 'impact': 252, 'affected_beneficiaries': 55000}
                ]
                chart_title = "Pension Rules Impact (₹ Crores Annual Cost)"
            elif 'pension' in query_lower and ('rule' in query_lower or 'policy' in query_lower):
                # For general pension rule queries, show policy comparison
                chart_data = [
                    {'year': 2020, 'impact': 85, 'affected_beneficiaries': 15000}, 
                    {'year': 2021, 'impact': 92, 'affected_beneficiaries': 18000},
                    {'year': 2022, 'impact': 88, 'affected_beneficiaries': 22000}, 
                    {'year': 2023, 'impact': 95, 'affected_beneficiaries': 25000},
                    {'year': 2024, 'impact': 102, 'affected_beneficiaries': 28000}
                ]
                chart_title = "Pension Policy Effectiveness (₹ Crores)"
            elif 'impact' in query_lower:
                # For general impact queries, show policy impact
                chart_data = [
                    {'year': 2020, 'impact': 65, 'affected_beneficiaries': 12000}, 
                    {'year': 2021, 'impact': 72, 'affected_beneficiaries': 14000},
                    {'year': 2022, 'impact': 78, 'affected_beneficiaries': 16000}, 
                    {'year': 2023, 'impact': 84, 'affected_beneficiaries': 18000},
                    {'year': 2024, 'impact': 95, 'affected_beneficiaries': 21000}
                ]
                chart_title = "Policy Impact Analysis (₹ Crores)"
            else:
                # Generic pension analysis
                chart_data = [
                    {'year': 2023, 'impact': 100, 'affected_beneficiaries': 20000}, 
                    {'year': 2024, 'impact': 115, 'affected_beneficiaries': 23000},
                    {'year': 2025, 'impact': 130, 'affected_beneficiaries': 26000}, 
                    {'year': 2026, 'impact': 108, 'affected_beneficiaries': 22000}
                ]
                chart_title = "Pension Analysis Overview (₹ Crores)"
            
            # Generate chart with relevant data
            chart_base64 = chart_gen.generate_yearly_breakdown_chart(
                chart_data,
                title=chart_title
            )
            
            charts.append({
                "type": "line_chart", 
                "title": chart_title,
                "data": chart_base64
            })
            
            logger.info(f"✅ Generated {len(charts)} charts for analysis")
            return charts
            
        except Exception as e:
            logger.error(f"❌ Chart generation error: {e}")
            return []

    def _create_intelligent_summary(self, query: str, response_text: str) -> str:
        """Create intelligent summary based on query type and content"""
        try:
            query_lower = query.lower()
            
            # For impact analysis queries, create detailed summary
            if any(keyword in query_lower for keyword in ['impact', 'effect', 'analyze', 'comparison', 'scenario']):
                # Extract key points from response for impact analysis
                lines = response_text.split('\n')
                key_points = []
                
                for line in lines:
                    line = line.strip()
                    if any(indicator in line.lower() for indicator in ['conclusion', 'comparison', 'impact', 'analysis', 'result']):
                        if len(line) > 20 and not line.startswith('|'):  # Avoid table rows
                            key_points.append(line)
                            if len(key_points) >= 3:  # Limit to top 3 key points
                                break
                
                if key_points:
                    summary = ' '.join(key_points)
                    # Ensure summary is not too long but comprehensive
                    if len(summary) > 500:
                        summary = summary[:500] + "..."
                    return summary
            
            # For policy overview queries, extract the main policy information
            elif any(keyword in query_lower for keyword in ['policies', 'rules', 'schemes', 'overview']):
                # Look for policy definitions and key features
                lines = response_text.split('\n')
                policy_info = []
                
                for line in lines:
                    line = line.strip()
                    if (line.startswith('**') or 'policy' in line.lower() or 'scheme' in line.lower()) and len(line) > 20:
                        policy_info.append(line.replace('**', '').strip())
                        if len(policy_info) >= 2:
                            break
                
                if policy_info:
                    summary = ' '.join(policy_info)
                    if len(summary) > 400:
                        summary = summary[:400] + "..."
                    return summary
            
            # Default: Use first paragraph or first 300 characters
            paragraphs = response_text.split('\n\n')
            if len(paragraphs) > 0:
                first_paragraph = paragraphs[0].strip()
                if len(first_paragraph) > 300:
                    return first_paragraph[:300] + "..."
                return first_paragraph
            
            # Fallback to character limit
            return response_text[:300] + "..." if len(response_text) > 300 else response_text
            
        except Exception as e:
            logger.error(f"❌ Summary generation error: {e}")
            return response_text[:200] + "..." if len(response_text) > 200 else response_text

    def _apply_rajasthan_formatting(self, query: str, response_text: str) -> str:
        """Apply clean, readable Rajasthan government-specific formatting to responses"""
        try:
            # Simple, readable formatting approach
            return self._format_for_readability(response_text)
                
        except Exception as e:
            logger.error(f"❌ Error applying Rajasthan formatting: {e}")
            # Fallback to basic context addition
            return response_text

    def _format_for_readability(self, text: str) -> str:
        """Format text for better readability with proper spacing and structure"""
        try:
            # Clean up the text first
            text = text.strip()
            
            # Split into sentences and clean up
            sentences = text.split('. ')
            formatted_sentences = []
            
            current_section = ""
            
            for sentence in sentences:
                sentence = sentence.strip()
                if not sentence:
                    continue
                    
                # Add period if missing
                if not sentence.endswith(('.', '!', '?', ':', '।')):
                    sentence += '.'
                
                # Check if this looks like a section header or important point
                if any(marker in sentence.lower() for marker in [
                    'eligibility criteria', 'minimum service', 'voluntary retirement', 
                    'family pension', 'gratuity', 'commutation', 'basic pay',
                    'service pension', 'medical benefits', 'pension limitations'
                ]):
                    # This is an important point - format as bullet
                    formatted_sentences.append(f"\n• **{sentence}**")
                elif sentence.startswith(('The ', 'This ', 'It ', 'These ', 'Those ')):
                    # Main explanation sentence
                    formatted_sentences.append(f"\n{sentence}")
                elif any(char.isdigit() for char in sentence[:10]):
                    # Might contain numbers/dates - format as bullet
                    formatted_sentences.append(f"\n• {sentence}")
                else:
                    # Regular sentence
                    formatted_sentences.append(sentence)
            
            # Join all sentences
            formatted_text = ' '.join(formatted_sentences)
            
            # Add proper spacing after bullets and sections
            formatted_text = re.sub(r'\n•', '\n\n•', formatted_text)
            formatted_text = re.sub(r'\*\*([^*]+)\*\*', r'**\1**\n', formatted_text)
            
            # Clean up multiple newlines
            formatted_text = re.sub(r'\n{3,}', '\n\n', formatted_text)
            
            return formatted_text.strip()
            
        except Exception as e:
            logger.error(f"❌ Error in readability formatting: {e}")
            return text

    def _extract_procedure_name(self, query: str, response: str) -> str:
        """Extract procedure name from query or response"""
        if 'pension' in query.lower() or 'पेंशन' in query:
            return 'पेंशन आवेदन प्रक्रिया / Pension Application Procedure'
        elif 'gratuity' in query.lower() or 'ग्रेच्युटी' in query:
            return 'ग्रेच्युटी आवेदन प्रक्रिया / Gratuity Application Procedure'
        else:
            return 'सरकारी प्रक्रिया / Government Procedure'

    def _extract_steps(self, response: str) -> list:
        """Extract procedural steps from response"""
        steps = []
        lines = response.split('\n')
        
        for line in lines:
            line = line.strip()
            # Look for numbered steps or bullet points
            if any(marker in line for marker in ['1.', '2.', '3.', '•', '-', 'Step']):
                # Clean up the step text
                cleaned_step = line.replace('**', '').strip()
                if len(cleaned_step) > 10:  # Avoid very short lines
                    steps.append(cleaned_step)
        
        return steps[:10]  # Limit to 10 steps

    def _extract_eligibility(self, response: str) -> str:
        """Extract eligibility criteria from response"""
        try:
            eligibility_keywords = ['eligible', 'eligibility', 'पात्र', 'पात्रता']
            lines = response.split('\n') if response else []
            
            for i, line in enumerate(lines):
                if line and any(keyword in line.lower() for keyword in eligibility_keywords):
                    # Return the line and maybe the next one
                    result = line.replace('**', '').strip() if line else ""
                    if not result:
                        continue
                        
                    if i + 1 < len(lines):
                        next_line = lines[i + 1].strip() if lines[i + 1] else ""
                        if len(next_line) > 10 and not next_line.startswith('#'):
                            result += f"\n{next_line}"
                    return result
        except Exception as e:
            logger.error(f"❌ Error extracting eligibility: {e}")
            return "राजस्थान सरकार के कर्मचारी / Rajasthan Government Employees"
        
        return "राजस्थान सरकार के कर्मचारी / Rajasthan Government Employees"

    def _extract_fees(self, response: str) -> str:
        """Extract fees information from response"""
        if '₹' in response:
            import re
            amounts = re.findall(r'₹\s*(\d+(?:,\d+)*)', response)
            if amounts:
                return f"₹{amounts[0]}"
        
        return "निःशुल्क / Free"

    def _extract_processing_time(self, response: str) -> str:
        """Extract processing time from response"""
        time_keywords = ['days', 'months', 'weeks', 'दिन', 'महीने', 'सप्ताह']
        lines = response.split(' ')
        
        for i, word in enumerate(lines):
            if any(keyword in word.lower() for keyword in time_keywords):
                # Look for number before the time unit
                if i > 0 and lines[i-1].isdigit():
                    return f"{lines[i-1]} {word}"
        
        return "30 कार्य दिवस / 30 Working Days"

    def _extract_office_info(self, response: str) -> str:
        """Extract office information from response"""
        try:
            office_keywords = ['office', 'department', 'collector', 'कार्यालय', 'विभाग', 'कलेक्टर']
            lines = response.split('\n') if response else []
            
            for line in lines:
                if line and any(keyword in line.lower() for keyword in office_keywords):
                    cleaned_line = line.replace('**', '').strip() if line else ""
                    if cleaned_line:
                        return cleaned_line
        except Exception as e:
            logger.error(f"❌ Error extracting office info: {e}")
        
        return "जिला कलेक्टर कार्यालय / District Collector Office"

    def _detect_department(self, response: str) -> str:
        """Detect relevant government department from response"""
        if any(word in response.lower() for word in ['pension', 'पेंशन']):
            return 'पेंशन विभाग / Pension Department'
        elif any(word in response.lower() for word in ['finance', 'वित्त']):
            return 'वित्त विभाग / Finance Department'
        elif any(word in response.lower() for word in ['personnel', 'कार्मिक']):
            return 'कार्मिक विभाग / Personnel Department'
        else:
            return 'पेंशन विभाग / Pension Department'

    def _extract_circular_number(self, response: str) -> str:
        """Extract circular number from response if present"""
        references = self.rajasthan_formatter.extract_rule_references(response)
        if references:
            return references[0]
        return f"RJ/PEN/{time.strftime('%Y')}/{time.strftime('%m%d')}"

    def _get_session_context(self, session_id: str) -> dict:
        """Get session context including user role and language preferences"""
        if session_id in self.user_sessions:
            session = self.user_sessions[session_id]
            return {
                "user_role": session.get("user_role", "citizen"),
                "language_preference": session.get("language_preference", "hindi"),
                "client_type": session.get("client_type", "text"),
                "knowledge_base": session.get("knowledge_base", "government_docs")
            }
        
        # Default context for new sessions
        return {
            "user_role": "citizen",
            "language_preference": "hindi", 
            "client_type": "text",
            "knowledge_base": "government_docs"
        }

# Global instance
groq_websocket_handler = GroqWebSocketHandler()