PensionBot / enhanced_websocket_handler.py
ChAbhishek28's picture
Add 899999999999999999999999999999
5065491
"""
Enhanced WebSocket handler with hybrid LLM and voice features
"""
from fastapi import WebSocket, WebSocketDisconnect
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
import logging
import json
import asyncio
import uuid
import tempfile
import base64
from pathlib import Path
import io
import matplotlib.pyplot as plt
from llm_service import create_graph, create_basic_graph
from lancedb_service import lancedb_service
from hybrid_llm_service import HybridLLMService
from voice_service import voice_service
from rag_service import search_government_docs
from policy_chart_generator import PolicyChartGenerator
from conversational_service import conversational_service
# Initialize hybrid LLM service
hybrid_llm_service = HybridLLMService()
logger = logging.getLogger("voicebot")
def analyze_query_context(query: str) -> dict:
"""Analyze query to determine if it's document-related or general, and identify user role"""
query_lower = query.lower()
# Role-specific keywords and queries
role_patterns = {
'pension_beneficiary': [
'pension eligibility', 'pension documents', 'pension application', 'retirement benefits',
'pension calculation', 'pension amount', 'family pension', 'commutation',
'gratuity eligibility', 'provident fund withdrawal', 'medical benefits after retirement',
'pension certificate', 'life certificate', 'pension arrears', 'how to apply pension',
'pension office', 'pension disbursement', 'pension inquiry', 'pension status'
],
'procurement_officer': [
'tender process', 'bid submission', 'procurement thresholds', 'gem portal',
'msme relaxation', 'vendor registration', 'procurement checklist', 'bid evaluation',
'tender documents', 'procurement rules', 'bidding process', 'contract award',
'procurement guidelines', 'tender notice', 'technical bid', 'financial bid',
'procurement manual', 'vendor empanelment', 'tender committee'
],
'finance_staff': [
'sanctioning authority', 'financial approval', 'budget allocation', 'expenditure sanction',
'financial registers', 'audit compliance', 'treasury rules', 'payment authorization',
'financial delegation', 'budget utilization', 'fund release', 'financial procedure',
'accounting rules', 'financial reporting', 'expenditure control', 'financial audit',
'cash book', 'voucher processing', 'financial clearance'
],
'leadership_policymaker': [
'policy impact', 'scenario analysis', 'cost comparison', 'policy implementation',
'evidence pack', 'policy evaluation', 'impact assessment', 'strategic planning',
'policy formulation', 'comparative analysis', 'policy review', 'governance framework',
'administrative reform', 'policy effectiveness', 'decision support', 'policy brief'
]
}
# Government document keywords (expanded)
doc_keywords = [
'pension', 'leave', 'allowance', 'da', 'dearness', 'procurement', 'tender',
'medical', 'reimbursement', 'transfer', 'posting', 'promotion', 'service',
'rules', 'policy', 'government', 'circular', 'notification', 'benefits',
'gratuity', 'provident fund', 'retirement', 'salary', 'pay commission',
'eligibility', 'documents', 'application', 'process', 'approval', 'sanction',
'audit', 'finance', 'budget', 'expenditure', 'treasury', 'guidelines'
]
# General conversation keywords
general_keywords = [
'hello', 'hi', 'thank you', 'thanks', 'goodbye', 'bye', 'help',
'how are you', 'what is your name', 'who are you', 'weather',
'time', 'date', 'joke', 'story', 'song', 'recipe', 'movie'
]
# Detect user role
detected_role = None
role_confidence = 0.0
for role, patterns in role_patterns.items():
role_matches = sum(1 for pattern in patterns if pattern in query_lower)
if role_matches > 0:
current_confidence = min(role_matches * 0.4, 1.0)
if current_confidence > role_confidence:
detected_role = role
role_confidence = current_confidence
# Count general matches
doc_matches = sum(1 for kw in doc_keywords if kw in query_lower)
general_matches = sum(1 for kw in general_keywords if kw in query_lower)
# Determine query type - FIXED: Be more aggressive about document searches
if doc_matches > 0 or detected_role:
query_type = "document_related"
confidence = max(min(doc_matches * 0.3, 1.0), role_confidence)
elif general_matches > 0 and doc_matches == 0:
# Only treat as general if there are ZERO document keywords
query_type = "general_conversation"
confidence = min(general_matches * 0.4, 1.0)
else:
# DEFAULT to document search - this is a government document system
query_type = "document_related"
confidence = 0.5 # Higher confidence for document search by default
return {
"type": query_type,
"confidence": confidence,
"doc_keywords_found": doc_matches,
"general_keywords_found": general_matches,
"detected_role": detected_role,
"role_confidence": role_confidence
}
async def generate_llm_fallback_response(user_message: str, query_context: dict) -> str:
"""Generate response using Groq/Gemini for out-of-context queries"""
try:
# Determine which LLM to use based on query complexity
provider = hybrid_llm_service.choose_llm_provider(user_message)
# Create role-aware system prompt
detected_role = query_context.get("detected_role")
if query_context.get("type") == "general_conversation":
system_prompt = """You are a helpful assistant for a government document system.
The user is asking a general question not related to government documents.
Provide a friendly, helpful response and gently guide them to ask about government policies,
pension rules, leave policies, procurement procedures, or other administrative matters if they need official information."""
elif detected_role == "pension_beneficiary":
system_prompt = """You are an AI assistant specializing in government pension and retirement benefits.
The user appears to be a pension beneficiary or claimant. Provide helpful information about pension eligibility,
application processes, required documents, and procedures. Always remind them to verify information with
the pension disbursing authority and consult official government sources for the most current rules."""
elif detected_role == "procurement_officer":
system_prompt = """You are an AI assistant specializing in government procurement procedures.
The user appears to be involved in procurement or bidding processes. Provide helpful information about
tender procedures, MSME benefits, GeM portal usage, and procurement guidelines. Always remind them to
follow current procurement rules and consult the latest government circulars."""
elif detected_role == "finance_staff":
system_prompt = """You are an AI assistant specializing in government financial procedures.
The user appears to be finance staff. Provide helpful information about sanctioning procedures,
budget management, audit compliance, and treasury rules. Always remind them to follow current
financial rules and consult with the accounts department for official procedures."""
elif detected_role == "leadership_policymaker":
system_prompt = """You are an AI assistant specializing in policy analysis and decision support.
The user appears to be in a leadership or policy-making role. Provide helpful information about
policy impact analysis, evidence-based decision making, and strategic planning. Always recommend
consulting with relevant departments and conducting proper stakeholder consultations."""
else:
system_prompt = """You are an AI assistant for government document queries.
The user asked about something that wasn't found in the document database.
Provide helpful general information if you can, but always remind them that for official
government policies and procedures, they should consult official sources or contact
the relevant government office. Keep responses concise and professional."""
# Generate response using hybrid LLM service
if provider:
response = await hybrid_llm_service.generate_response(
user_message,
system_prompt=system_prompt,
provider=provider
)
logger.info(f"βœ… Generated LLM fallback response using {provider.value}")
return response
else:
logger.warning("⚠️ No LLM provider available")
return "I understand your question, but I'm currently unable to access my AI capabilities. Please try again later or contact the relevant government office for official information."
except Exception as e:
logger.error(f"❌ Error generating LLM fallback response: {e}")
return f"I apologize, but I encountered an error while processing your query: '{user_message}'. Please try rephrasing your question or contact the relevant authorities for assistance."
def validate_transcription_quality(text: str, language: str) -> dict:
"""Validate transcription quality and provide suggestions"""
if not text or not text.strip():
return {
"score": 0.0,
"level": "very_low",
"suggestions": ["No speech detected", "Check microphone", "Speak closer to microphone"]
}
text_clean = text.strip()
words = text_clean.split()
# Quality indicators
word_count = len(words)
avg_word_length = sum(len(word) for word in words) / max(word_count, 1)
has_meaningful_words = any(len(word) > 2 for word in words)
# Check for garbled/nonsensical words (too many consonants, unusual patterns)
garbled_words = 0
for word in words:
word_clean = ''.join(c for c in word.lower() if c.isalpha())
if len(word_clean) > 3:
consonants = sum(1 for c in word_clean if c not in 'aeiou')
vowels = len(word_clean) - consonants
if consonants > vowels * 2: # Too many consonants
garbled_words += 1
garbled_ratio = garbled_words / max(word_count, 1)
# Language-specific checks
if language in ['en', 'hi-en']:
# Check for common English/Hinglish patterns
common_words = ['the', 'and', 'is', 'in', 'to', 'of', 'for', 'with', 'on', 'at', 'by', 'from',
'pension', 'government', 'policy', 'rules', 'what', 'how', 'why', 'when', 'where',
'benefits', 'allowance', 'service', 'employee', 'officer', 'department']
has_common_words = any(word.lower() in common_words for word in words)
# Check for obvious nonsensical combinations
nonsensical_patterns = ['benchern', 'trend rules', 'rinterpret', 'wht']
has_nonsensical = any(pattern in text_clean.lower() for pattern in nonsensical_patterns)
else:
has_common_words = True # Assume valid for other languages
has_nonsensical = False
# Calculate quality score
score = 0.0
if word_count > 0:
score += 0.2
if word_count >= 3:
score += 0.2
if avg_word_length > 2:
score += 0.2
if has_meaningful_words:
score += 0.2
if has_common_words:
score += 0.2
# Apply penalties
if garbled_ratio > 0.3: # More than 30% garbled words
score *= 0.3
elif garbled_ratio > 0.1: # More than 10% garbled words
score *= 0.6
if has_nonsensical:
score *= 0.2
if word_count < 2 or avg_word_length < 2:
score *= 0.5
# Determine quality level and suggestions
if score >= 0.7:
level = "high"
suggestions = []
elif score >= 0.4:
level = "medium"
suggestions = ["Speak a bit more clearly for better recognition"]
elif score >= 0.2:
level = "low"
suggestions = ["Speak more clearly", "Try speaking slower", "Reduce background noise"]
else:
level = "very_low"
suggestions = ["Audio quality is poor", "Speak closer to microphone", "Reduce background noise", "Try speaking more slowly and clearly"]
return {
"score": score,
"level": level,
"suggestions": suggestions,
"garbled_ratio": garbled_ratio,
"word_count": word_count
}
def create_language_context(user_language: str, normalized_language: str) -> str:
"""Create appropriate language context for LLM responses"""
if not user_language:
return ""
lang_lower = user_language.lower()
if lang_lower in ['hindi', 'hi', 'hi-in']:
return " (User is speaking in Hindi. You may include relevant Hindi terms for government policies in India, especially for technical terms like 'ΰ€Έΰ€°ΰ€•ΰ€Ύΰ€°ΰ₯€ ΰ€¨ΰ₯€ΰ€€ΰ€Ώ', 'ΰ€ͺΰ₯‡ΰ€‚ΰ€Άΰ€¨', 'ΰ€­ΰ€€ΰ₯ΰ€€ΰ€Ύ' etc.)"
elif lang_lower in ['hinglish', 'hi-en']:
return " (User is speaking in Hinglish - Hindi-English mix. Feel free to use both languages naturally in your response, especially for government terminology.)"
elif lang_lower in ['spanish', 'es']:
return " (User is speaking in Spanish. Respond in Spanish if possible, or provide translations for key terms.)"
elif lang_lower in ['french', 'fr']:
return " (User is speaking in French. Respond in French if possible, or provide translations for key terms.)"
elif lang_lower in ['arabic', 'ar']:
return " (User is speaking in Arabic. Respond in Arabic if possible, or provide translations for key terms.)"
elif lang_lower in ['chinese', 'zh']:
return " (User is speaking in Chinese. Respond in Chinese if possible, or provide translations for key terms.)"
elif lang_lower in ['japanese', 'ja']:
return " (User is speaking in Japanese. Respond in Japanese if possible, or provide translations for key terms.)"
elif lang_lower in ['english', 'en', 'en-us', 'en-in']:
return " (User is speaking in English. Provide clear, professional responses.)"
else:
return f" (User language preference: {user_language}. Adapt response accordingly if possible.)"
def select_voice_for_language(user_language: str, preferred_voice: str = None) -> str:
"""Select appropriate TTS voice based on user's language"""
if preferred_voice:
return preferred_voice
if not user_language:
return "en-US-AriaNeural" # Default
lang_lower = user_language.lower()
# Voice mapping for different languages
voice_map = {
'hindi': 'hi-IN-SwaraNeural',
'hi': 'hi-IN-SwaraNeural',
'hi-in': 'hi-IN-SwaraNeural',
'hinglish': 'en-IN-NeerjaNeural', # Indian English for Hinglish
'hi-en': 'en-IN-NeerjaNeural',
'english': 'en-US-AriaNeural',
'en': 'en-US-AriaNeural',
'en-us': 'en-US-AriaNeural',
'en-in': 'en-IN-NeerjaNeural',
'spanish': 'es-ES-ElviraNeural',
'es': 'es-ES-ElviraNeural',
'french': 'fr-FR-DeniseNeural',
'fr': 'fr-FR-DeniseNeural',
'german': 'de-DE-KatjaNeural',
'de': 'de-DE-KatjaNeural',
'portuguese': 'pt-BR-FranciscaNeural',
'pt': 'pt-BR-FranciscaNeural',
'italian': 'it-IT-ElsaNeural',
'it': 'it-IT-ElsaNeural',
'russian': 'ru-RU-SvetlanaNeural',
'ru': 'ru-RU-SvetlanaNeural',
'chinese': 'zh-CN-XiaoxiaoNeural',
'zh': 'zh-CN-XiaoxiaoNeural',
'japanese': 'ja-JP-NanamiNeural',
'ja': 'ja-JP-NanamiNeural',
'arabic': 'ar-SA-ZariyahNeural',
'ar': 'ar-SA-ZariyahNeural'
}
return voice_map.get(lang_lower, 'en-US-AriaNeural')
def attempt_transcription_correction(text: str, quality_info: dict) -> str:
"""Attempt to correct common transcription errors, especially for government terms"""
if not text or quality_info.get('score', 1) > 0.6:
return text # Don't correct if quality is already good
text_lower = text.lower()
corrected = text
# Common government term corrections
corrections = {
# Pension-related corrections
'tension': 'pension',
'penshun': 'pension',
'penshan': 'pension',
'mention': 'pension',
'bruised': 'rules',
'bruce': 'rules',
'brews': 'rules',
'cruise': 'rules',
# Policy-related corrections
'policy': 'policy', # Keep as is
'polity': 'policy',
'polly': 'policy',
# Government-related corrections
'government': 'government', # Keep as is
'goverment': 'government',
'govermint': 'government',
# Allowance corrections
'allowens': 'allowance',
'alowance': 'allowance',
# Benefits corrections
'benifits': 'benefits',
'benefets': 'benefits',
# Common words
'wat': 'what',
'wot': 'what',
'wen': 'when',
'were': 'where',
'haw': 'how',
'no': 'know',
'noe': 'know'
}
# Split into words and correct each
words = corrected.split()
corrected_words = []
for word in words:
# Remove punctuation for matching
clean_word = word.lower().strip('.,!?;:')
# Check for corrections
if clean_word in corrections and corrections[clean_word] != clean_word:
# Preserve original capitalization pattern
if word.isupper():
corrected_word = corrections[clean_word].upper()
elif word.istitle():
corrected_word = corrections[clean_word].capitalize()
else:
corrected_word = corrections[clean_word]
# Preserve punctuation
punctuation = word[len(clean_word):] if len(word) > len(clean_word) else ''
corrected_words.append(corrected_word + punctuation)
else:
corrected_words.append(word)
final_corrected = ' '.join(corrected_words)
# Only return correction if it's significantly different
if final_corrected.lower() != text.lower():
return final_corrected
return text
async def handle_enhanced_websocket_connection(websocket: WebSocket):
"""Enhanced WebSocket handler with hybrid LLM and voice features"""
await websocket.accept()
logger.info("πŸ”Œ Enhanced WebSocket client connected.")
# Initialize session data
session_data = {
"messages": [],
"user_preferences": {
"voice_enabled": True, # Enable voice by default since this is a voice bot
"preferred_voice": "en-US-AriaNeural",
"response_mode": "both" # text, voice, both - default to both for voice bot
},
"context": ""
}
try:
# Get initial connection data
initial_data = await websocket.receive_json()
# Validate initial data
if not isinstance(initial_data, dict):
logger.warning(f"⚠️ Invalid initial data format: {type(initial_data)}")
initial_data = {}
logger.info(f"πŸ“¨ Initial connection data: {initial_data}")
# Extract user preferences
if "preferences" in initial_data:
session_data["user_preferences"].update(initial_data["preferences"])
# Setup user session
flag = "user_id" in initial_data
graph = None # Initialize graph variable
if flag:
thread_id = initial_data.get("user_id")
knowledge_base = initial_data.get("knowledge_base", "government_docs")
# Use hybrid LLM or traditional graph based on configuration
if hybrid_llm_service.use_hybrid:
logger.info("πŸ€– Using Hybrid LLM Service")
use_hybrid = True
else:
graph = await create_graph(kb_tool=True, mcp_config=None)
use_hybrid = False
config = {
"configurable": {
"thread_id": thread_id,
"knowledge_base": knowledge_base,
}
}
else:
# Basic setup for unauthenticated users
thread_id = str(uuid.uuid4())
knowledge_base = "government_docs"
use_hybrid = hybrid_llm_service.use_hybrid
if not use_hybrid:
graph = create_basic_graph()
config = {"configurable": {"thread_id": thread_id}}
# Send initial greeting with voice/hybrid capabilities
await send_enhanced_greeting(websocket, session_data)
# Main message handling loop
while True:
try:
data = await websocket.receive_json()
# Validate message format
if not isinstance(data, dict):
logger.warning(f"⚠️ Invalid message format: {type(data)}")
continue
if "type" not in data:
logger.warning(f"⚠️ Message missing 'type' field: {data}")
continue
message_type = data["type"]
logger.debug(f"πŸ“¨ Received message type: {message_type}")
if message_type == "text_message":
await handle_text_message(
websocket, data, session_data,
use_hybrid, config, knowledge_base, graph
)
elif message_type == "voice_message":
await handle_voice_message(
websocket, data, session_data,
use_hybrid, config, knowledge_base, graph
)
elif message_type == "preferences_update":
await handle_preferences_update(websocket, data, session_data)
elif message_type == "get_voice_status":
await websocket.send_json({
"type": "voice_status",
"data": voice_service.get_voice_status()
})
elif message_type == "get_llm_status":
await websocket.send_json({
"type": "llm_status",
"data": hybrid_llm_service.get_provider_info()
})
elif message_type == "connection":
# Handle initial connection - already processed above
logger.debug("πŸ“¨ Connection message received (already processed)")
elif message_type == "get_knowledge_bases":
# Handle knowledge base request
await websocket.send_json({
"type": "knowledge_bases",
"knowledge_bases": ["government_docs", "rajasthan_documents"]
})
else:
logger.warning(f"⚠️ Unknown message type: {message_type}")
except WebSocketDisconnect:
logger.info("πŸ”Œ WebSocket client disconnected.")
break
except Exception as e:
logger.error(f"❌ Error handling message: {e}")
try:
await websocket.send_json({
"type": "error",
"message": f"An error occurred: {str(e)}"
})
except:
pass # Connection might be closed
except Exception as e:
logger.error(f"❌ Error handling message: {e}")
await websocket.send_json({
"type": "error",
"message": f"An error occurred: {str(e)}"
})
except WebSocketDisconnect:
logger.info("πŸ”Œ WebSocket client disconnected during setup.")
except Exception as e:
logger.error(f"❌ WebSocket error: {e}")
try:
await websocket.send_json({
"type": "error",
"message": f"Connection error: {str(e)}"
})
except:
pass
async def send_enhanced_greeting(websocket: WebSocket, session_data: dict):
"""Send enhanced greeting with system capabilities"""
# Get system status
llm_info = hybrid_llm_service.get_provider_info()
voice_status = voice_service.get_voice_status()
greeting_text = f"""πŸ€– Welcome to the Government Document Assistant!
I'm powered by a hybrid AI system that can help you with:
β€’ Government policies and procedures
β€’ Document search and analysis
β€’ Scenario analysis with visualizations
β€’ Quick answers and detailed explanations
Current capabilities:
β€’ LLM: {'Hybrid (' + llm_info['fast_provider'] + '/' + llm_info['complex_provider'] + ')' if llm_info['hybrid_enabled'] else 'Single provider'}
β€’ Voice features: {'Enabled' if voice_status['voice_enabled'] else 'Disabled'}
How can I assist you today? You can ask me about any government policies, procedures, or documents!"""
# Send text greeting
await websocket.send_json({
"type": "connection_successful",
"message": greeting_text,
"provider_used": "system",
"capabilities": {
"hybrid_llm": llm_info['hybrid_enabled'],
"voice_features": voice_status['voice_enabled'],
"scenario_analysis": True
}
})
# Send voice greeting if enabled
if session_data["user_preferences"]["voice_enabled"] and voice_status['voice_enabled']:
voice_greeting = "Welcome to the Government Document Assistant! I can help you with policies, procedures, and document analysis. How can I assist you today?"
audio_data = await voice_service.text_to_speech(voice_greeting)
if audio_data:
await websocket.send_json({
"type": "audio_response",
"audio_data": base64.b64encode(audio_data).decode(),
"format": "mp3"
})
async def handle_text_message(websocket: WebSocket, data: dict, session_data: dict,
use_hybrid: bool, config: dict, knowledge_base: str, graph=None):
"""Handle text message with hybrid LLM"""
user_message = data["message"]
logger.info(f"πŸ’¬ Received text message: {user_message}")
# Send acknowledgment
await websocket.send_json({
"type": "message_received",
"message": "Processing your message..."
})
try:
if use_hybrid:
# Stream hybrid LLM service response
response_chunks = []
provider_used = None
async for chunk in get_hybrid_response(
user_message, session_data["context"], config, knowledge_base, session_data.get("session_id")
):
response_chunks.append(chunk)
# Send each chunk as structured data
await websocket.send_json({
"type": "streaming_response",
"clause_text": chunk.get("clause_text", ""),
"summary": chunk.get("summary", ""),
"role_checklist": chunk.get("role_checklist", []),
"source_title": chunk.get("source_title", ""),
"clause_id": chunk.get("clause_id", ""),
"date": chunk.get("date", ""),
"url": chunk.get("url", ""),
"score": chunk.get("score", 1.0),
"scenario_analysis": chunk.get("scenario_analysis", None),
"charts": chunk.get("charts", [])
})
# Optionally, aggregate or select the best chunk for final response
# Here, just use the first chunk for context update and provider
if response_chunks:
provider_used = hybrid_llm_service.choose_llm_provider(user_message)
provider_used = provider_used.value if provider_used else "unknown"
session_data["context"] = response_chunks[0].get("clause_text", "")[-1000:]
else:
# Use traditional graph approach
session_data["messages"].append(HumanMessage(content=user_message))
result = await graph.ainvoke({"messages": session_data["messages"]}, config)
response_text = result["messages"][-1].content
provider_used = "traditional"
await send_text_response(websocket, response_text, provider_used, session_data)
await websocket.send_json({
"type": "llm_response",
"text": "Done",
"provider_used": provider_used,
"timestamp": asyncio.get_event_loop().time()
})
except Exception as e:
logger.error(f"❌ Error processing text message: {e}")
await websocket.send_json({
"type": "error",
"message": f"Error processing your message: {str(e)}"
})
async def handle_voice_message(websocket: WebSocket, data: dict, session_data: dict,
use_hybrid: bool, config: dict, knowledge_base: str, graph=None):
"""Handle voice message with enhanced multi-language ASR and TTS"""
if not voice_service.is_voice_enabled():
await websocket.send_json({
"type": "error",
"message": "Voice features are not enabled"
})
return
try:
# Get audio data - handle both old and new format
if "audio_data" in data:
audio_data = base64.b64decode(data["audio_data"])
else:
# Handle old format or direct binary data
logger.error("❌ No audio_data field found in voice message")
await websocket.send_json({
"type": "error",
"message": "No audio data provided"
})
return
# Extract and validate user language preference
user_language = data.get("lang") or data.get("language") or session_data.get("language") or session_data["user_preferences"].get("language") or "english"
# Normalize language codes
language_map = {
'english': 'en', 'en': 'en', 'en-us': 'en', 'en-in': 'en',
'hindi': 'hi', 'hi': 'hi', 'hi-in': 'hi',
'hinglish': 'hi-en', 'hi-en': 'hi-en',
'spanish': 'es', 'es': 'es',
'french': 'fr', 'fr': 'fr',
'german': 'de', 'de': 'de',
'portuguese': 'pt', 'pt': 'pt',
'italian': 'it', 'it': 'it',
'russian': 'ru', 'ru': 'ru',
'chinese': 'zh', 'zh': 'zh',
'japanese': 'ja', 'ja': 'ja',
'arabic': 'ar', 'ar': 'ar'
}
normalized_language = language_map.get(user_language.lower(), 'en')
logger.info(f"🌍 Processing voice with language: {user_language} (normalized: {normalized_language})")
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
temp_file.write(audio_data)
temp_file_path = temp_file.name
# Check if we should use server-side ASR or expect browser transcription
if voice_service.asr_provider == "browser-native":
# Expect transcription to come from browser, not from audio processing
logger.info("οΏ½ Using browser-native ASR - expecting transcription from client")
# Clean up temp file since we won't process it
Path(temp_file_path).unlink()
# Check if transcription was provided in the message
if "transcription" in data:
transcribed_text = data["transcription"]
logger.info(f"🎀 Browser transcription ({user_language}): {transcribed_text}")
else:
await websocket.send_json({
"type": "info",
"message": "Browser ASR mode - please ensure your browser supports speech recognition"
})
return
else:
# Use server-side ASR (Whisper) with multiple attempts if needed
logger.info(f"🎀 Processing audio with language preference: {user_language}")
transcribed_text = await voice_service.speech_to_text(temp_file_path, normalized_language)
# If transcription seems poor, try with English as fallback
if transcribed_text and normalized_language != 'en':
quality_check = validate_transcription_quality(transcribed_text, normalized_language)
if quality_check['score'] < 0.3:
logger.info("πŸ”„ Trying English transcription as fallback")
english_transcription = await voice_service.speech_to_text(temp_file_path, 'en')
if english_transcription:
english_quality = validate_transcription_quality(english_transcription, 'en')
if english_quality['score'] > quality_check['score'] + 0.2:
logger.info(f"🎯 English transcription better: {english_transcription}")
transcribed_text = english_transcription
normalized_language = 'en'
# Clean up temp file
Path(temp_file_path).unlink()
if not transcribed_text:
await websocket.send_json({
"type": "error",
"message": "Could not transcribe audio. Please try speaking clearly or check your microphone."
})
return
# Validate and potentially correct transcription
transcription_quality = validate_transcription_quality(transcribed_text, normalized_language)
corrected_text = attempt_transcription_correction(transcribed_text, transcription_quality)
# Use corrected text if available and quality improved
final_text = corrected_text if corrected_text != transcribed_text else transcribed_text
final_quality = validate_transcription_quality(final_text, normalized_language) if corrected_text != transcribed_text else transcription_quality
logger.info(f"🎀 Transcribed ({user_language}): {transcribed_text} | Quality: {transcription_quality['score']:.2f}")
if corrected_text != transcribed_text:
logger.info(f"πŸ”§ Corrected to: {final_text} | New Quality: {final_quality['score']:.2f}")
# Send transcription with quality info
await websocket.send_json({
"type": "transcription",
"text": final_text,
"original_text": transcribed_text if corrected_text != transcribed_text else None,
"language": user_language or "auto-detected",
"confidence": final_quality['level'],
"quality_score": final_quality['score'],
"suggestions": final_quality['suggestions'],
"was_corrected": corrected_text != transcribed_text
})
# Handle low-quality transcription with detailed feedback
if final_quality['score'] < 0.2:
await websocket.send_json({
"type": "transcription_error",
"message": f"Could not understand the audio clearly. Transcribed: '{final_text}'. Please try again with clearer speech.",
"suggestions": final_quality['suggestions'],
"quality_details": {
"score": final_quality['score'],
"garbled_ratio": final_quality.get('garbled_ratio', 0),
"word_count": final_quality.get('word_count', 0)
}
})
return
elif final_quality['score'] < 0.4:
# Continue processing but warn user
correction_note = f" (Auto-corrected from: '{transcribed_text}')" if corrected_text != transcribed_text else ""
await websocket.send_json({
"type": "transcription_warning",
"message": f"Audio quality is low (Score: {final_quality['score']:.2f}). I heard: '{final_text}'{correction_note}. Is this correct?",
"suggestions": final_quality['suggestions'] + ["Try speaking more slowly", "Ensure microphone is close to your mouth", "Reduce background noise"]
})
# Add comprehensive language context to the prompt for better responses
language_context = create_language_context(user_language, normalized_language)
enhanced_message = final_text + language_context
# Process as text message with language context
if use_hybrid:
response_chunks = []
async for chunk in get_hybrid_response(
enhanced_message, session_data["context"], config, knowledge_base, session_data.get("session_id")
):
response_chunks.append(chunk)
# Send each chunk as structured data
await websocket.send_json({
"type": "streaming_response",
"clause_text": chunk.get("clause_text", ""),
"summary": chunk.get("summary", ""),
"role_checklist": chunk.get("role_checklist", []),
"source_title": chunk.get("source_title", ""),
"clause_id": chunk.get("clause_id", ""),
"date": chunk.get("date", ""),
"url": chunk.get("url", ""),
"score": chunk.get("score", 1.0),
"scenario_analysis": chunk.get("scenario_analysis", None),
"charts": chunk.get("charts", [])
})
# Create response text for voice synthesis from the chunks
response_text_parts = []
for chunk in response_chunks:
if chunk.get("clause_text"):
response_text_parts.append(chunk.get("clause_text", ""))
if chunk.get("summary"):
response_text_parts.append(chunk.get("summary", ""))
response_text = " ".join(response_text_parts) if response_text_parts else "I found relevant information about your query."
provider_used = hybrid_llm_service.choose_llm_provider(enhanced_message)
provider_used = provider_used.value if provider_used else "unknown"
else:
session_data["messages"].append(HumanMessage(content=enhanced_message))
result = await graph.ainvoke({"messages": session_data["messages"]}, config)
response_text = result["messages"][-1].content
provider_used = "traditional"
# Send text response
await send_text_response(websocket, response_text, provider_used, session_data)
# Send voice response if enabled
if session_data["user_preferences"]["response_mode"] in ["voice", "both"]:
# Choose appropriate voice based on user's language
voice_preference = select_voice_for_language(user_language, session_data["user_preferences"]["preferred_voice"])
voice_text = voice_service.create_voice_response_with_guidance(
response_text,
suggested_resources=["Government portal", "Local offices", "Helpline numbers"],
redirect_info="contact your local government office for personalized assistance"
)
audio_response = await voice_service.text_to_speech(
voice_text,
voice_preference
)
if audio_response:
await websocket.send_bytes(audio_response)
else:
logger.warning("⚠️ Could not generate audio response")
except Exception as e:
logger.error(f"❌ Error processing voice message: {e}")
await websocket.send_json({
"type": "error",
"message": f"Error processing voice message: {str(e)}. Please try again or switch to text mode."
})
async def get_hybrid_response(user_message: str, context: str, config: dict, knowledge_base: str, session_id: str = None):
"""Get response using hybrid LLM with conversational clarity checks and intelligent document search"""
try:
# First, determine if this is a government document query or general query
query_context = analyze_query_context(user_message)
logger.info(f"πŸ” Query analysis: {query_context}")
# Check for follow-up context from previous clarification requests
follow_up_context = conversational_service.handle_follow_up(user_message, session_id) if session_id else {'is_follow_up': False}
if follow_up_context['is_follow_up']:
# Use enhanced query from follow-up context
search_query = follow_up_context['enhanced_query']
logger.info(f"οΏ½ Using follow-up enhanced query: '{search_query}'")
else:
search_query = user_message
logger.info(f"οΏ½πŸ” Searching documents for: '{search_query}' in knowledge base: {knowledge_base}")
from rag_service import search_documents_async
docs = await search_documents_async(search_query, limit=5) # Increased limit for better results
logger.info(f"πŸ“Š Document search returned {len(docs) if docs else 0} results")
# Conversational clarity analysis - check if we need clarification
if not follow_up_context['is_follow_up']: # Don't ask for clarification on follow-ups
conversational_analysis = conversational_service.generate_conversational_response(
user_message, docs, session_id
)
if conversational_analysis['needs_clarification']:
logger.info("❓ Query needs clarification - asking user for more context")
# Return clarification request instead of search results
yield {
"clause_text": conversational_analysis['response'],
"summary": "Clarification request to better understand your question",
"role_checklist": ["Please provide more specific information"],
"source_title": "Conversational Assistant",
"clause_id": "CLARIFICATION_REQUEST",
"date": "2024",
"url": "",
"score": 1.0,
"scenario_analysis": None,
"charts": [],
"needs_clarification": True,
"query_type": conversational_analysis.get('query_type', 'unclear')
}
return
# Check if we have relevant documents
has_relevant_docs = docs and any(doc.get("score", 0) > 0.5 for doc in docs)
# FIXED: Always try document search first, even for apparent "general" queries
# This is a government document system - most queries should check documents
# Only use pure LLM for very clear greetings/thanks with NO document matches
very_general_keywords = ['hello', 'hi', 'thank you', 'thanks', 'goodbye', 'bye']
is_very_general = (query_context.get("type") == "general_conversation" and
query_context.get("confidence", 0) > 0.8 and
any(keyword in user_message.lower() for keyword in very_general_keywords) and
not docs)
if is_very_general:
logger.info("πŸ“± Detected pure greeting/thanks with no documents, using LLM directly")
llm_response = await generate_llm_fallback_response(user_message, query_context)
yield {
"clause_text": llm_response,
"summary": "AI-generated response for general conversation",
"role_checklist": ["This is general information", "For official queries, ask about government policies"],
"source_title": "AI Assistant",
"clause_id": "AI_GENERAL",
"date": "2024",
"url": "",
"score": 0.9,
"scenario_analysis": None,
"charts": []
}
return
if has_relevant_docs:
try:
from scenario_analysis_service import run_scenario_analysis
# Detect scenario analysis intent (simple keyword match)
scenario_keywords = ["impact", "cost", "scenario", "multiplier", "da", "dr"]
if any(kw in user_message.lower() for kw in scenario_keywords):
logger.info("πŸ” Running scenario analysis")
# Example params extraction (can be improved)
params = {
'base_pension': 30000,
'multiplier': 1.1 if "multiplier" in user_message.lower() else 1.0,
'da_percent': 0.06 if "da" in user_message.lower() else 0.0,
'num_beneficiaries': 1000,
'years': 3,
'inflation': 0.05
}
scenario_result = run_scenario_analysis(params)
# Generate charts for scenario_result
try:
chart_gen = PolicyChartGenerator()
charts = []
# Example: line chart for yearly results
if "yearly_results" in scenario_result:
years = [r['year'] for r in scenario_result['yearly_results']]
base_costs = [r['base_cost'] for r in scenario_result['yearly_results']]
scenario_costs = [r['scenario_cost'] for r in scenario_result['yearly_results']]
# Generate chart and append to charts list
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(years, base_costs, label='Base Cost', marker='o')
ax.plot(years, scenario_costs, label='Scenario Cost', marker='s')
ax.legend()
ax.set_title('Scenario Analysis: Cost Over Years')
ax.set_xlabel('Year')
ax.set_ylabel('Cost (β‚Ή)')
ax.grid(True, alpha=0.3)
# Format y-axis to show values in lakhs
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: f'β‚Ή{x/100000:.1f}L'))
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
chart_base64 = base64.b64encode(buf.read()).decode('utf-8')
plt.close(fig)
charts.append({"type": "line_chart", "data": chart_base64})
logger.info(f"βœ… Generated {len(charts)} charts for scenario analysis")
scenario_result["charts"] = charts
except Exception as chart_error:
logger.error(f"❌ Failed to generate charts: {chart_error}")
scenario_result["charts"] = []
scenario_result["chart_error"] = str(chart_error)
else:
scenario_result = None
except Exception as scenario_error:
logger.error(f"❌ Scenario analysis failed: {scenario_error}")
scenario_result = None
for doc in docs:
response_obj = {
"clause_text": doc.get("clause_text", ""),
"summary": doc.get("summary", ""),
"role_checklist": doc.get("role_checklist", []),
"source_title": doc.get("source_title", ""),
"clause_id": doc.get("clause_id", ""),
"date": doc.get("date", ""),
"url": doc.get("url", ""),
"score": doc.get("score", 1.0),
"scenario_analysis": scenario_result,
"charts": scenario_result.get("charts", []) if scenario_result else []
}
yield response_obj
else:
# No relevant documents found - use LLM fallback
logger.info("πŸ“š No relevant documents found, using LLM fallback")
llm_response = await generate_llm_fallback_response(user_message, query_context)
yield {
"clause_text": llm_response,
"summary": "Generated by AI assistant for general query",
"role_checklist": ["Consider if this relates to government policies", "Contact relevant office for official information"],
"source_title": "AI Assistant",
"clause_id": "AI_001",
"date": "2024",
"url": "",
"score": 0.8,
"scenario_analysis": None,
"charts": []
}
except Exception as e:
logger.warning(f"❌ Document search failed: {e}, using LLM fallback")
try:
llm_response = await generate_llm_fallback_response(user_message, {"type": "unknown", "confidence": 0.3})
yield {
"clause_text": llm_response,
"summary": "AI-generated response due to system error",
"role_checklist": ["Verify information independently", "Try rephrasing your query"],
"source_title": "AI Assistant (Fallback)",
"clause_id": "AI_ERROR",
"date": "2024",
"url": "",
"score": 0.5,
"scenario_analysis": None,
"charts": []
}
except Exception as fallback_error:
logger.error(f"❌ LLM fallback also failed: {fallback_error}")
yield {
"clause_text": "I apologize, but I'm experiencing technical difficulties. Please try again later or rephrase your question.",
"summary": "System error occurred",
"role_checklist": ["Try again later", "Rephrase your question", "Contact technical support"],
"source_title": "System Error",
"clause_id": "ERROR_001",
"date": "2024",
"url": "",
"score": 0.1,
"scenario_analysis": None,
"charts": []
}
async def send_text_response(websocket: WebSocket, response_text: str, provider_used: str, session_data: dict):
"""Send text response to client"""
await websocket.send_json({
"type": "llm_response",
"text": response_text,
"provider_used": provider_used,
"timestamp": asyncio.get_event_loop().time()
})
# Update session context
session_data["context"] = response_text[-1000:] # Keep last 1000 chars as context
async def handle_scenario_response(websocket: WebSocket, response_text: str, provider_used: str):
"""Handle scenario analysis response with images"""
parts = response_text.split("SCENARIO_ANALYSIS_IMAGE:")
text_part = parts[0].strip()
# Send text part
if text_part:
await websocket.send_json({
"type": "llm_response",
"text": text_part,
"provider_used": provider_used
})
# Send image parts
for i, part in enumerate(parts[1:], 1):
try:
image_data = part.strip()
await websocket.send_json({
"type": "scenario_image",
"image_data": image_data,
"image_index": i,
"chart_type": "analysis"
})
except Exception as e:
logger.error(f"Error sending scenario image {i}: {e}")
async def handle_preferences_update(websocket: WebSocket, data: dict, session_data: dict):
"""Handle user preferences update"""
try:
session_data["user_preferences"].update(data["preferences"])
await websocket.send_json({
"type": "preferences_updated",
"preferences": session_data["user_preferences"]
})
logger.info(f"πŸ”§ Updated user preferences: {session_data['user_preferences']}")
except Exception as e:
logger.error(f"❌ Error updating preferences: {e}")
await websocket.send_json({
"type": "error",
"message": f"Error updating preferences: {str(e)}"
})
# Keep the original function for backward compatibility
async def handle_websocket_connection(websocket: WebSocket):
"""Original websocket handler for backward compatibility"""
await handle_enhanced_websocket_connection(websocket)