Spaces:
Sleeping
Sleeping
Commit
·
061a93c
1
Parent(s):
a0b0f78
Add 899999999999999
Browse files- app.py +20 -0
- enhanced_websocket_handler.py +31 -17
- evidence_pack_export.py +61 -0
- rag_service.py +67 -4
- scenario_analysis_service.py +58 -0
app.py
CHANGED
|
@@ -1,3 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import logging
|
| 3 |
from datetime import datetime
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
+
from fastapi.responses import FileResponse, JSONResponse
|
| 3 |
+
from evidence_pack_export import export_evidence_pack_pdf, export_evidence_pack_csv
|
| 4 |
+
|
| 5 |
+
app = FastAPI()
|
| 6 |
+
|
| 7 |
+
# ...existing code...
|
| 8 |
+
|
| 9 |
+
@app.post("/export_evidence_pack")
|
| 10 |
+
async def export_evidence_pack(request: Request):
|
| 11 |
+
data = await request.json()
|
| 12 |
+
format = data.get("format", "pdf")
|
| 13 |
+
if format == "pdf":
|
| 14 |
+
file_path = export_evidence_pack_pdf(data)
|
| 15 |
+
return FileResponse(file_path, media_type="application/pdf", filename="evidence_pack.pdf")
|
| 16 |
+
elif format == "csv":
|
| 17 |
+
file_path = export_evidence_pack_csv(data)
|
| 18 |
+
return FileResponse(file_path, media_type="text/csv", filename="evidence_pack.csv")
|
| 19 |
+
else:
|
| 20 |
+
return JSONResponse({"error": "Invalid format"}, status_code=400)
|
| 21 |
import os
|
| 22 |
import logging
|
| 23 |
from datetime import datetime
|
enhanced_websocket_handler.py
CHANGED
|
@@ -422,27 +422,41 @@ async def get_hybrid_response(user_message: str, context: str, config: dict, kno
|
|
| 422 |
from rag_service import search_documents_async
|
| 423 |
docs = await search_documents_async(user_message, limit=3)
|
| 424 |
if docs:
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
else:
|
| 429 |
logger.info("📚 No documents found, using existing context")
|
|
|
|
| 430 |
except Exception as e:
|
| 431 |
logger.warning(f"❌ Document search failed: {e}, using existing context")
|
| 432 |
-
|
| 433 |
-
response_chunks = []
|
| 434 |
-
async for chunk in hybrid_llm_service.get_streaming_response(
|
| 435 |
-
user_message,
|
| 436 |
-
context=context,
|
| 437 |
-
system_prompt="""You are a helpful government document assistant. Provide accurate, helpful responses based on the context provided. When appropriate, suggest additional resources or redirect users to relevant departments for more assistance."""
|
| 438 |
-
):
|
| 439 |
-
response_chunks.append(chunk)
|
| 440 |
-
yield chunk # Yield each chunk for streaming to frontend
|
| 441 |
-
full_response = "".join(response_chunks)
|
| 442 |
-
logger.info(f"✅ LLM response received, length: {len(full_response)}")
|
| 443 |
-
provider = hybrid_llm_service.choose_llm_provider(user_message)
|
| 444 |
-
provider_used = provider.value if provider else "unknown"
|
| 445 |
-
return
|
| 446 |
|
| 447 |
async def send_text_response(websocket: WebSocket, response_text: str, provider_used: str, session_data: dict):
|
| 448 |
"""Send text response to client"""
|
|
|
|
| 422 |
from rag_service import search_documents_async
|
| 423 |
docs = await search_documents_async(user_message, limit=3)
|
| 424 |
if docs:
|
| 425 |
+
from scenario_analysis_service import run_scenario_analysis
|
| 426 |
+
# Detect scenario analysis intent (simple keyword match)
|
| 427 |
+
scenario_keywords = ["impact", "cost", "scenario", "multiplier", "da", "dr"]
|
| 428 |
+
if any(kw in user_message.lower() for kw in scenario_keywords):
|
| 429 |
+
# Example params extraction (can be improved)
|
| 430 |
+
params = {
|
| 431 |
+
'base_pension': 30000,
|
| 432 |
+
'multiplier': 1.1 if "multiplier" in user_message.lower() else 1.0,
|
| 433 |
+
'da_percent': 0.06 if "da" in user_message.lower() else 0.0,
|
| 434 |
+
'num_beneficiaries': 1000,
|
| 435 |
+
'years': 3,
|
| 436 |
+
'inflation': 0.05
|
| 437 |
+
}
|
| 438 |
+
scenario_result = run_scenario_analysis(params)
|
| 439 |
+
else:
|
| 440 |
+
scenario_result = None
|
| 441 |
+
for doc in docs:
|
| 442 |
+
response_obj = {
|
| 443 |
+
"clause_text": doc.get("clause_text", ""),
|
| 444 |
+
"summary": doc.get("summary", ""),
|
| 445 |
+
"role_checklist": doc.get("role_checklist", []),
|
| 446 |
+
"source_title": doc.get("source_title", ""),
|
| 447 |
+
"clause_id": doc.get("clause_id", ""),
|
| 448 |
+
"date": doc.get("date", ""),
|
| 449 |
+
"url": doc.get("url", ""),
|
| 450 |
+
"score": doc.get("score", 1.0),
|
| 451 |
+
"scenario_analysis": scenario_result
|
| 452 |
+
}
|
| 453 |
+
yield response_obj
|
| 454 |
else:
|
| 455 |
logger.info("📚 No documents found, using existing context")
|
| 456 |
+
yield {"clause_text": context, "summary": "", "role_checklist": [], "source_title": "", "clause_id": "", "date": "", "url": "", "score": 1.0}
|
| 457 |
except Exception as e:
|
| 458 |
logger.warning(f"❌ Document search failed: {e}, using existing context")
|
| 459 |
+
yield {"clause_text": context, "summary": "", "role_checklist": [], "source_title": "", "clause_id": "", "date": "", "url": "", "score": 1.0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
async def send_text_response(websocket: WebSocket, response_text: str, provider_used: str, session_data: dict):
|
| 462 |
"""Send text response to client"""
|
evidence_pack_export.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
from fpdf import FPDF
|
| 3 |
+
import tempfile
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
def export_evidence_pack_pdf(data, filename=None):
|
| 7 |
+
"""
|
| 8 |
+
Export evidence pack as PDF. Data should include clause, summary, checklist, scenario, metadata.
|
| 9 |
+
Returns path to PDF file.
|
| 10 |
+
"""
|
| 11 |
+
pdf = FPDF()
|
| 12 |
+
pdf.add_page()
|
| 13 |
+
pdf.set_font("Arial", size=12)
|
| 14 |
+
pdf.cell(200, 10, txt="Evidence Pack", ln=True, align='C')
|
| 15 |
+
pdf.ln(10)
|
| 16 |
+
pdf.set_font("Arial", size=10)
|
| 17 |
+
pdf.multi_cell(0, 8, f"Clause: {data.get('clause_text','')}")
|
| 18 |
+
pdf.multi_cell(0, 8, f"Summary: {data.get('summary','')}")
|
| 19 |
+
pdf.multi_cell(0, 8, f"Checklist: {', '.join(data.get('role_checklist',[]))}")
|
| 20 |
+
pdf.multi_cell(0, 8, f"Source: {data.get('source_title','')} | Clause ID: {data.get('clause_id','')} | Date: {data.get('date','')} | URL: {data.get('url','')}")
|
| 21 |
+
pdf.ln(5)
|
| 22 |
+
scenario = data.get('scenario_analysis',{})
|
| 23 |
+
if scenario:
|
| 24 |
+
pdf.multi_cell(0, 8, f"Scenario Analysis:")
|
| 25 |
+
pdf.multi_cell(0, 8, f"Yearly Results: {scenario.get('yearly_results','')}")
|
| 26 |
+
pdf.multi_cell(0, 8, f"Cumulative Base: {scenario.get('cumulative_base','')}")
|
| 27 |
+
pdf.multi_cell(0, 8, f"Cumulative Scenario: {scenario.get('cumulative_scenario','')}")
|
| 28 |
+
pdf.multi_cell(0, 8, f"Optimistic: {scenario.get('optimistic','')}")
|
| 29 |
+
pdf.multi_cell(0, 8, f"Pessimistic: {scenario.get('pessimistic','')}")
|
| 30 |
+
pdf.multi_cell(0, 8, f"Driver Breakdown: {scenario.get('driver_breakdown','')}")
|
| 31 |
+
if not filename:
|
| 32 |
+
filename = os.path.join(tempfile.gettempdir(), f"evidence_pack_{os.getpid()}.pdf")
|
| 33 |
+
pdf.output(filename)
|
| 34 |
+
return filename
|
| 35 |
+
|
| 36 |
+
def export_evidence_pack_csv(data, filename=None):
|
| 37 |
+
"""
|
| 38 |
+
Export evidence pack as CSV. Data should include clause, summary, checklist, scenario, metadata.
|
| 39 |
+
Returns path to CSV file.
|
| 40 |
+
"""
|
| 41 |
+
if not filename:
|
| 42 |
+
filename = os.path.join(tempfile.gettempdir(), f"evidence_pack_{os.getpid()}.csv")
|
| 43 |
+
with open(filename, 'w', newline='', encoding='utf-8') as csvfile:
|
| 44 |
+
writer = csv.writer(csvfile)
|
| 45 |
+
writer.writerow(["Field", "Value"])
|
| 46 |
+
writer.writerow(["Clause", data.get('clause_text','')])
|
| 47 |
+
writer.writerow(["Summary", data.get('summary','')])
|
| 48 |
+
writer.writerow(["Checklist", ', '.join(data.get('role_checklist',[]))])
|
| 49 |
+
writer.writerow(["Source", data.get('source_title','')])
|
| 50 |
+
writer.writerow(["Clause ID", data.get('clause_id','')])
|
| 51 |
+
writer.writerow(["Date", data.get('date','')])
|
| 52 |
+
writer.writerow(["URL", data.get('url','')])
|
| 53 |
+
scenario = data.get('scenario_analysis',{})
|
| 54 |
+
if scenario:
|
| 55 |
+
writer.writerow(["Yearly Results", scenario.get('yearly_results','')])
|
| 56 |
+
writer.writerow(["Cumulative Base", scenario.get('cumulative_base','')])
|
| 57 |
+
writer.writerow(["Cumulative Scenario", scenario.get('cumulative_scenario','')])
|
| 58 |
+
writer.writerow(["Optimistic", scenario.get('optimistic','')])
|
| 59 |
+
writer.writerow(["Pessimistic", scenario.get('pessimistic','')])
|
| 60 |
+
writer.writerow(["Driver Breakdown", scenario.get('driver_breakdown','')])
|
| 61 |
+
return filename
|
rag_service.py
CHANGED
|
@@ -149,9 +149,42 @@ async def search_documents_async(query: str, limit: int = 5) -> List[Dict[str, A
|
|
| 149 |
all_docs = sorted(all_docs, key=lambda x: getattr(x, 'score', 1.0), reverse=True)[:limit]
|
| 150 |
results = []
|
| 151 |
for doc in all_docs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
results.append({
|
| 153 |
-
"
|
| 154 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
"score": getattr(doc, 'score', 1.0)
|
| 156 |
})
|
| 157 |
logger.info(f"📚 Found {len(results)} documents for query: {query}")
|
|
@@ -184,9 +217,39 @@ async def search_rajasthan_documents_async(query: str, limit: int = 5) -> List[D
|
|
| 184 |
return get_fallback_content(query)
|
| 185 |
results = []
|
| 186 |
for _, row in search_results.iterrows():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
results.append({
|
| 188 |
-
"
|
| 189 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
"score": float(row.get('_distance', 1.0))
|
| 191 |
})
|
| 192 |
logger.info(f"📚 Found {len(results)} Rajasthan documents for query: {query}")
|
|
|
|
| 149 |
all_docs = sorted(all_docs, key=lambda x: getattr(x, 'score', 1.0), reverse=True)[:limit]
|
| 150 |
results = []
|
| 151 |
for doc in all_docs:
|
| 152 |
+
metadata = doc.metadata if hasattr(doc, 'metadata') else {}
|
| 153 |
+
clause_text = doc.page_content
|
| 154 |
+
# Simple extractive summary: first sentence or up to 2 lines
|
| 155 |
+
summary = clause_text.split(". ")[0][:180] + ("..." if len(clause_text) > 180 else "")
|
| 156 |
+
# Role-aware checklist logic (basic template)
|
| 157 |
+
role_checklist = []
|
| 158 |
+
query_lower = query.lower()
|
| 159 |
+
if "pension" in query_lower:
|
| 160 |
+
role_checklist = [
|
| 161 |
+
"Check eligibility (service years, misconduct)",
|
| 162 |
+
"Collect required documents (service book, ID, proof)",
|
| 163 |
+
"Obtain approvals (sanctioning authority)",
|
| 164 |
+
"Submit application to pension office"
|
| 165 |
+
]
|
| 166 |
+
elif "procurement" in query_lower or "bid" in query_lower:
|
| 167 |
+
role_checklist = [
|
| 168 |
+
"Review procurement thresholds and MSME relaxations",
|
| 169 |
+
"Prepare bid documents",
|
| 170 |
+
"Complete registration and approvals",
|
| 171 |
+
"Submit bid before deadline"
|
| 172 |
+
]
|
| 173 |
+
elif "finance" in query_lower:
|
| 174 |
+
role_checklist = [
|
| 175 |
+
"Check sanctioning steps",
|
| 176 |
+
"Update registers",
|
| 177 |
+
"Obtain necessary approvals",
|
| 178 |
+
"Notify stakeholders"
|
| 179 |
+
]
|
| 180 |
results.append({
|
| 181 |
+
"clause_text": clause_text,
|
| 182 |
+
"summary": summary,
|
| 183 |
+
"role_checklist": role_checklist,
|
| 184 |
+
"source_title": metadata.get('title', metadata.get('source', 'Unknown')),
|
| 185 |
+
"clause_id": metadata.get('clause_id', ''),
|
| 186 |
+
"date": metadata.get('date', ''),
|
| 187 |
+
"url": metadata.get('url', ''),
|
| 188 |
"score": getattr(doc, 'score', 1.0)
|
| 189 |
})
|
| 190 |
logger.info(f"📚 Found {len(results)} documents for query: {query}")
|
|
|
|
| 217 |
return get_fallback_content(query)
|
| 218 |
results = []
|
| 219 |
for _, row in search_results.iterrows():
|
| 220 |
+
clause_text = row['content']
|
| 221 |
+
summary = clause_text.split(". ")[0][:180] + ("..." if len(clause_text) > 180 else "")
|
| 222 |
+
role_checklist = []
|
| 223 |
+
query_lower = query.lower()
|
| 224 |
+
if "pension" in query_lower:
|
| 225 |
+
role_checklist = [
|
| 226 |
+
"Check eligibility (service years, misconduct)",
|
| 227 |
+
"Collect required documents (service book, ID, proof)",
|
| 228 |
+
"Obtain approvals (sanctioning authority)",
|
| 229 |
+
"Submit application to pension office"
|
| 230 |
+
]
|
| 231 |
+
elif "procurement" in query_lower or "bid" in query_lower:
|
| 232 |
+
role_checklist = [
|
| 233 |
+
"Review procurement thresholds and MSME relaxations",
|
| 234 |
+
"Prepare bid documents",
|
| 235 |
+
"Complete registration and approvals",
|
| 236 |
+
"Submit bid before deadline"
|
| 237 |
+
]
|
| 238 |
+
elif "finance" in query_lower:
|
| 239 |
+
role_checklist = [
|
| 240 |
+
"Check sanctioning steps",
|
| 241 |
+
"Update registers",
|
| 242 |
+
"Obtain necessary approvals",
|
| 243 |
+
"Notify stakeholders"
|
| 244 |
+
]
|
| 245 |
results.append({
|
| 246 |
+
"clause_text": clause_text,
|
| 247 |
+
"summary": summary,
|
| 248 |
+
"role_checklist": role_checklist,
|
| 249 |
+
"source_title": row.get('title', row.get('filename', 'Unknown')),
|
| 250 |
+
"clause_id": row.get('clause_id', ''),
|
| 251 |
+
"date": row.get('date', ''),
|
| 252 |
+
"url": row.get('url', ''),
|
| 253 |
"score": float(row.get('_distance', 1.0))
|
| 254 |
})
|
| 255 |
logger.info(f"📚 Found {len(results)} Rajasthan documents for query: {query}")
|
scenario_analysis_service.py
CHANGED
|
@@ -1,3 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import matplotlib.pyplot as plt
|
| 2 |
import seaborn as sns
|
| 3 |
import plotly.graph_objects as go
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import datetime
|
| 3 |
+
from typing import Dict, Any
|
| 4 |
+
|
| 5 |
+
def run_scenario_analysis(params: Dict[str, Any]) -> Dict[str, Any]:
|
| 6 |
+
"""
|
| 7 |
+
Simulate scenario impact for pension/DA/DR changes.
|
| 8 |
+
params: {
|
| 9 |
+
'base_pension': float,
|
| 10 |
+
'multiplier': float,
|
| 11 |
+
'da_percent': float,
|
| 12 |
+
'num_beneficiaries': int,
|
| 13 |
+
'years': int,
|
| 14 |
+
'inflation': float
|
| 15 |
+
}
|
| 16 |
+
Returns: dict with yearly/cumulative cost, sensitivity bands, driver breakdown
|
| 17 |
+
"""
|
| 18 |
+
base_pension = params.get('base_pension', 30000)
|
| 19 |
+
multiplier = params.get('multiplier', 1.0)
|
| 20 |
+
da_percent = params.get('da_percent', 0.06)
|
| 21 |
+
num_beneficiaries = params.get('num_beneficiaries', 1000)
|
| 22 |
+
years = params.get('years', 3)
|
| 23 |
+
inflation = params.get('inflation', 0.05)
|
| 24 |
+
|
| 25 |
+
results = []
|
| 26 |
+
total_base = 0
|
| 27 |
+
total_scenario = 0
|
| 28 |
+
for year in range(1, years+1):
|
| 29 |
+
# Baseline
|
| 30 |
+
base_cost = base_pension * num_beneficiaries * ((1+inflation)**(year-1))
|
| 31 |
+
# Scenario: multiplier and DA applied
|
| 32 |
+
scenario_cost = base_pension * multiplier * (1+da_percent) * num_beneficiaries * ((1+inflation)**(year-1))
|
| 33 |
+
results.append({
|
| 34 |
+
'year': year,
|
| 35 |
+
'base_cost': round(base_cost,2),
|
| 36 |
+
'scenario_cost': round(scenario_cost,2)
|
| 37 |
+
})
|
| 38 |
+
total_base += base_cost
|
| 39 |
+
total_scenario += scenario_cost
|
| 40 |
+
|
| 41 |
+
# Sensitivity bands (simple optimistic/pessimistic)
|
| 42 |
+
optimistic = total_scenario * 0.95
|
| 43 |
+
pessimistic = total_scenario * 1.10
|
| 44 |
+
driver_breakdown = {
|
| 45 |
+
'beneficiaries': round(num_beneficiaries * base_pension * multiplier * years,2),
|
| 46 |
+
'rate_change': round(base_pension * (multiplier-1) * num_beneficiaries * years,2),
|
| 47 |
+
'da_increase': round(base_pension * da_percent * num_beneficiaries * years,2)
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
return {
|
| 51 |
+
'yearly_results': results,
|
| 52 |
+
'cumulative_base': round(total_base,2),
|
| 53 |
+
'cumulative_scenario': round(total_scenario,2),
|
| 54 |
+
'optimistic': round(optimistic,2),
|
| 55 |
+
'pessimistic': round(pessimistic,2),
|
| 56 |
+
'driver_breakdown': driver_breakdown,
|
| 57 |
+
'timestamp': datetime.datetime.now().isoformat()
|
| 58 |
+
}
|
| 59 |
import matplotlib.pyplot as plt
|
| 60 |
import seaborn as sns
|
| 61 |
import plotly.graph_objects as go
|