Spaces:
Runtime error
Runtime error
fix vae nan bug
Browse files
app.py
CHANGED
|
@@ -217,21 +217,7 @@ if NEW_MODEL:
|
|
| 217 |
model.eval()
|
| 218 |
print(missing_keys, extra_keys)
|
| 219 |
assert len(missing_keys) == 0
|
| 220 |
-
|
| 221 |
-
print(f"vae_state_dict encoder dtype: {vae_state_dict['encoder.conv_in.weight'].dtype}")
|
| 222 |
-
autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False)
|
| 223 |
-
print(f"autoencoder encoder dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
| 224 |
-
print(f"encoder before load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
| 225 |
-
print(f"encoder before load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
| 226 |
-
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
|
| 227 |
-
print(f"encoder after load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
| 228 |
-
print(f"encoder after load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
| 229 |
-
autoencoder = autoencoder.to(device)
|
| 230 |
-
autoencoder.eval()
|
| 231 |
-
print(f"encoder after eval() min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
| 232 |
-
print(f"encoder after eval() max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
| 233 |
-
print(f"autoencoder encoder after eval() dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
| 234 |
-
assert len(missing_keys) == 0
|
| 235 |
# else:
|
| 236 |
# opts = HandDiffOpts()
|
| 237 |
# model_path = './finetune_epoch=5-step=130000.ckpt'
|
|
@@ -266,127 +252,6 @@ hands = mp_hands.Hands(
|
|
| 266 |
min_detection_confidence=0.1,
|
| 267 |
)
|
| 268 |
|
| 269 |
-
# def make_ref_cond(
|
| 270 |
-
# image
|
| 271 |
-
# ):
|
| 272 |
-
# print("ready to run autoencoder")
|
| 273 |
-
# # print(f"image.device: {image.device}, type(image): {type(image)}")
|
| 274 |
-
# # image = image.to("cuda")
|
| 275 |
-
# print(f"autoencoder device: {next(autoencoder.parameters()).device}")
|
| 276 |
-
# latent = opts.latent_scaling_factor * autoencoder.encode(image[None, ...]).sample()
|
| 277 |
-
# return image[None, ...], latent
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
# def get_ref_anno(ref):
|
| 281 |
-
# print("inside get_ref_anno")
|
| 282 |
-
# if ref is None:
|
| 283 |
-
# return (
|
| 284 |
-
# None,
|
| 285 |
-
# None,
|
| 286 |
-
# None,
|
| 287 |
-
# None,
|
| 288 |
-
# None,
|
| 289 |
-
# )
|
| 290 |
-
# img = ref["composite"][..., :3]
|
| 291 |
-
# img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
|
| 292 |
-
# keypts = np.zeros((42, 2))
|
| 293 |
-
# print("ready to run mediapipe")
|
| 294 |
-
# if REF_POSE_MASK:
|
| 295 |
-
# print(f"type(img): {type(img)}, img.shape: {img.shape}, img.dtype: {img.dtype}")
|
| 296 |
-
# mp_pose = hands.process(img)
|
| 297 |
-
# print("processed mediapipe")
|
| 298 |
-
# detected = np.array([0, 0])
|
| 299 |
-
# start_idx = 0
|
| 300 |
-
# if mp_pose.multi_hand_landmarks:
|
| 301 |
-
# # handedness is flipped assuming the input image is mirrored in MediaPipe
|
| 302 |
-
# for hand_landmarks, handedness in zip(
|
| 303 |
-
# mp_pose.multi_hand_landmarks, mp_pose.multi_handedness
|
| 304 |
-
# ):
|
| 305 |
-
# # actually right hand
|
| 306 |
-
# if handedness.classification[0].label == "Left":
|
| 307 |
-
# start_idx = 0
|
| 308 |
-
# detected[0] = 1
|
| 309 |
-
# # actually left hand
|
| 310 |
-
# elif handedness.classification[0].label == "Right":
|
| 311 |
-
# start_idx = 21
|
| 312 |
-
# detected[1] = 1
|
| 313 |
-
# for i, landmark in enumerate(hand_landmarks.landmark):
|
| 314 |
-
# keypts[start_idx + i] = [
|
| 315 |
-
# landmark.x * opts.image_size[1],
|
| 316 |
-
# landmark.y * opts.image_size[0],
|
| 317 |
-
# ]
|
| 318 |
-
|
| 319 |
-
# sam_predictor.set_image(img)
|
| 320 |
-
# l = keypts[:21].shape[0]
|
| 321 |
-
# if keypts[0].sum() != 0 and keypts[21].sum() != 0:
|
| 322 |
-
# input_point = np.array([keypts[0], keypts[21]])
|
| 323 |
-
# input_label = np.array([1, 1])
|
| 324 |
-
# elif keypts[0].sum() != 0:
|
| 325 |
-
# input_point = np.array(keypts[:1])
|
| 326 |
-
# input_label = np.array([1])
|
| 327 |
-
# elif keypts[21].sum() != 0:
|
| 328 |
-
# input_point = np.array(keypts[21:22])
|
| 329 |
-
# input_label = np.array([1])
|
| 330 |
-
# print("ready to run SAM")
|
| 331 |
-
# masks, _, _ = sam_predictor.predict(
|
| 332 |
-
# point_coords=input_point,
|
| 333 |
-
# point_labels=input_label,
|
| 334 |
-
# multimask_output=False,
|
| 335 |
-
# )
|
| 336 |
-
# print("finished SAM")
|
| 337 |
-
# hand_mask = masks[0]
|
| 338 |
-
# masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
|
| 339 |
-
# ref_pose = visualize_hand(keypts, masked_img)
|
| 340 |
-
# else:
|
| 341 |
-
# raise gr.Error("No hands detected in the reference image.")
|
| 342 |
-
# else:
|
| 343 |
-
# hand_mask = np.zeros_like(img[:,:, 0])
|
| 344 |
-
# ref_pose = np.zeros_like(img)
|
| 345 |
-
|
| 346 |
-
# image_transform = Compose(
|
| 347 |
-
# [
|
| 348 |
-
# ToTensor(),
|
| 349 |
-
# Resize(opts.image_size),
|
| 350 |
-
# Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
| 351 |
-
# ]
|
| 352 |
-
# )
|
| 353 |
-
# image = image_transform(img)
|
| 354 |
-
# kpts_valid = check_keypoints_validity(keypts, opts.image_size)
|
| 355 |
-
# heatmaps = torch.tensor(
|
| 356 |
-
# keypoint_heatmap(
|
| 357 |
-
# scale_keypoint(keypts, opts.image_size, opts.latent_size), opts.latent_size, var=1.0
|
| 358 |
-
# )
|
| 359 |
-
# * kpts_valid[:, None, None],
|
| 360 |
-
# dtype=torch.float,
|
| 361 |
-
# # device=device,
|
| 362 |
-
# )[None, ...]
|
| 363 |
-
# mask = torch.tensor(
|
| 364 |
-
# cv2.resize(
|
| 365 |
-
# hand_mask.astype(int),
|
| 366 |
-
# dsize=opts.latent_size,
|
| 367 |
-
# interpolation=cv2.INTER_NEAREST,
|
| 368 |
-
# ),
|
| 369 |
-
# dtype=torch.float,
|
| 370 |
-
# # device=device,
|
| 371 |
-
# ).unsqueeze(0)[None, ...]
|
| 372 |
-
# image, latent = make_ref_cond(
|
| 373 |
-
# image,
|
| 374 |
-
# # keypts,
|
| 375 |
-
# # hand_mask,
|
| 376 |
-
# # device=device,
|
| 377 |
-
# # target_size=opts.image_size,
|
| 378 |
-
# # latent_size=opts.latent_size,
|
| 379 |
-
# )
|
| 380 |
-
# print("finished autoencoder")
|
| 381 |
-
|
| 382 |
-
# if not REF_POSE_MASK:
|
| 383 |
-
# heatmaps = torch.zeros_like(heatmaps)
|
| 384 |
-
# mask = torch.zeros_like(mask)
|
| 385 |
-
# ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
| 386 |
-
|
| 387 |
-
# return img, ref_pose, ref_cond
|
| 388 |
-
|
| 389 |
-
|
| 390 |
def get_ref_anno(ref):
|
| 391 |
if ref is None:
|
| 392 |
return (
|
|
@@ -396,6 +261,24 @@ def get_ref_anno(ref):
|
|
| 396 |
None,
|
| 397 |
None,
|
| 398 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
img = ref["composite"][..., :3]
|
| 400 |
img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
|
| 401 |
keypts = np.zeros((42, 2))
|
|
|
|
| 217 |
model.eval()
|
| 218 |
print(missing_keys, extra_keys)
|
| 219 |
assert len(missing_keys) == 0
|
| 220 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
# else:
|
| 222 |
# opts = HandDiffOpts()
|
| 223 |
# model_path = './finetune_epoch=5-step=130000.ckpt'
|
|
|
|
| 252 |
min_detection_confidence=0.1,
|
| 253 |
)
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
def get_ref_anno(ref):
|
| 256 |
if ref is None:
|
| 257 |
return (
|
|
|
|
| 261 |
None,
|
| 262 |
None,
|
| 263 |
)
|
| 264 |
+
|
| 265 |
+
vae_state_dict = torch.load(vae_path, map_location='cpu')['state_dict']
|
| 266 |
+
print(f"vae_state_dict encoder dtype: {vae_state_dict['encoder.conv_in.weight'].dtype}")
|
| 267 |
+
autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False)
|
| 268 |
+
print(f"autoencoder encoder dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
| 269 |
+
print(f"encoder before load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
| 270 |
+
print(f"encoder before load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
| 271 |
+
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
|
| 272 |
+
print(f"encoder after load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
| 273 |
+
print(f"encoder after load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
| 274 |
+
autoencoder = autoencoder.to(device)
|
| 275 |
+
autoencoder.eval()
|
| 276 |
+
print(f"encoder after eval() min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
| 277 |
+
print(f"encoder after eval() max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
| 278 |
+
print(f"autoencoder encoder after eval() dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
| 279 |
+
assert len(missing_keys) == 0
|
| 280 |
+
|
| 281 |
+
|
| 282 |
img = ref["composite"][..., :3]
|
| 283 |
img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
|
| 284 |
keypts = np.zeros((42, 2))
|