__all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] # Cell from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # img = PILImage.create('dog.jpg') # img.thumbnail((192, 192)) # img # Cell learn = load_learner('model.pkl') # learn.predict(img) # Cell categories = ('Dog', 'Cat') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # classify_image(img) # Cell image = gr.Image(height=192, width=192) label = gr.Label() examples = ['dog.jpg', 'cat.jpg', 'rabbit.jpg'] intf = gr.Interface(fn= classify_image, inputs = image, outputs = label, examples = examples) intf.launch(inline = False, share = True)