Spaces:
Build error
Build error
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| from PIL import Image | |
| from io import BytesIO | |
| # Load your trained model | |
| model = tf.keras.models.load_model("best_model_weights.h5") # Replace with the path to your saved model | |
| # Define the image classification function | |
| def classify_image(input_image): | |
| # Preprocess the input image | |
| input_image = Image.open(BytesIO(input_image)) | |
| input_image = input_image.resize((img_width, img_height)) | |
| input_image = np.array(input_image) / 255.0 # Normalize pixel values | |
| # Make a prediction using the model | |
| predictions = model.predict(np.expand_dims(input_image, axis=0)) | |
| # Get the class label with the highest probability | |
| class_index = np.argmax(predictions) | |
| class_prob = predictions[0][class_index] | |
| # Define class labels (you can replace these with your actual class labels) | |
| class_labels = ["Normal", "Cataract"] | |
| # Get the class label | |
| class_label = class_labels[class_index] | |
| return f"Predicted Class: {class_label} (Probability: {class_prob:.2f})" | |
| # Define the Gradio interface | |
| iface = gr.Interface( | |
| fn=classify_image, | |
| inputs=gr.inputs.Image(shape=(img_height, img_width)), | |
| outputs="text", | |
| live=True, | |
| title="Image Classifier" | |
| ) | |
| # Run the Gradio interface | |
| iface.launch() | |