Spaces:
Running
Running
File size: 40,674 Bytes
e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 cde8f48 0d84878 cde8f48 0d84878 cde8f48 0d84878 cde8f48 0d84878 cde8f48 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 e16b9e6 0d84878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 |
# Phase 13 Implementation Spec: Modal Pipeline Integration
**Goal**: Wire existing Modal code execution into the agent pipeline.
**Philosophy**: "Sandboxed execution makes AI-generated code trustworthy."
**Prerequisite**: Phase 12 complete (MCP server working)
**Priority**: P1 - HIGH VALUE ($2,500 Modal Innovation Award)
**Estimated Time**: 2-3 hours
---
## 1. Why Modal Integration?
### Current State Analysis
Mario already implemented `src/tools/code_execution.py`:
| Component | Status | Notes |
|-----------|--------|-------|
| `ModalCodeExecutor` class | Built | Executes Python in Modal sandbox |
| `SANDBOX_LIBRARIES` | Defined | pandas, numpy, scipy, etc. |
| `execute()` method | Implemented | Stdout/stderr capture |
| `execute_with_return()` | Implemented | Returns `result` variable |
| `AnalysisAgent` | Built | Uses Modal for statistical analysis |
| **Pipeline Integration** | **MISSING** | Not wired into main orchestrator |
### What's Missing
```text
Current Flow:
User Query β Orchestrator β Search β Judge β [Report] β Done
With Modal:
User Query β Orchestrator β Search β Judge β [Analysis*] β Report β Done
β
Modal Sandbox Execution
```
*The AnalysisAgent exists but is NOT called by either orchestrator.
---
## 2. Critical Dependency Analysis
### The Problem (Senior Feedback)
```python
# src/agents/analysis_agent.py - Line 8
from agent_framework import (
AgentRunResponse,
BaseAgent,
...
)
```
```toml
# pyproject.toml - agent-framework is OPTIONAL
[project.optional-dependencies]
magentic = [
"agent-framework-core",
]
```
**If we import `AnalysisAgent` in the simple orchestrator without the `magentic` extra installed, the app CRASHES on startup.**
### The SOLID Solution
**Single Responsibility Principle**: Decouple Modal execution logic from `agent_framework`.
```text
BEFORE (Coupled):
AnalysisAgent (requires agent_framework)
β
ModalCodeExecutor
AFTER (Decoupled):
StatisticalAnalyzer (no agent_framework dependency) β Simple mode uses this
β
ModalCodeExecutor
β
AnalysisAgent (wraps StatisticalAnalyzer) β Magentic mode uses this
```
**Key insight**: Create `src/services/statistical_analyzer.py` with ZERO agent_framework imports.
---
## 3. Prize Opportunity
### Modal Innovation Award: $2,500
**Judging Criteria**:
1. **Sandbox Isolation** - Code runs in container, not local
2. **Scientific Computing** - Real pandas/scipy analysis
3. **Safety** - Can't access local filesystem
4. **Speed** - Modal's fast cold starts
### What We Need to Show
```python
# LLM generates analysis code
code = """
import pandas as pd
import scipy.stats as stats
data = pd.DataFrame({
'study': ['Study1', 'Study2', 'Study3'],
'effect_size': [0.45, 0.52, 0.38],
'sample_size': [120, 85, 200]
})
weighted_mean = (data['effect_size'] * data['sample_size']).sum() / data['sample_size'].sum()
t_stat, p_value = stats.ttest_1samp(data['effect_size'], 0)
print(f"Weighted Effect Size: {weighted_mean:.3f}")
print(f"P-value: {p_value:.4f}")
result = "SUPPORTED" if p_value < 0.05 else "INCONCLUSIVE"
"""
# Executed SAFELY in Modal sandbox
executor = get_code_executor()
output = executor.execute(code) # Runs in isolated container!
```
---
## 4. Technical Specification
### 4.1 Dependencies
```toml
# pyproject.toml - NO CHANGES to dependencies
# StatisticalAnalyzer uses only:
# - pydantic-ai (already in main deps)
# - modal (already in main deps)
# - src.tools.code_execution (no agent_framework)
```
### 4.2 Environment Variables
```bash
# .env
MODAL_TOKEN_ID=your-token-id
MODAL_TOKEN_SECRET=your-token-secret
```
### 4.3 Integration Points
| Integration Point | File | Change Required |
|-------------------|------|-----------------|
| New Service | `src/services/statistical_analyzer.py` | CREATE (no agent_framework) |
| Simple Orchestrator | `src/orchestrator.py` | Use `StatisticalAnalyzer` |
| Config | `src/utils/config.py` | Add `enable_modal_analysis` setting |
| AnalysisAgent | `src/agents/analysis_agent.py` | Refactor to wrap `StatisticalAnalyzer` |
| MCP Tool | `src/mcp_tools.py` | Add `analyze_hypothesis` tool |
---
## 5. Implementation
### 5.1 Configuration Update (`src/utils/config.py`)
```python
class Settings(BaseSettings):
# ... existing settings ...
# Modal Configuration
modal_token_id: str | None = None
modal_token_secret: str | None = None
enable_modal_analysis: bool = False # Opt-in for hackathon demo
@property
def modal_available(self) -> bool:
"""Check if Modal credentials are configured."""
return bool(self.modal_token_id and self.modal_token_secret)
```
### 5.2 StatisticalAnalyzer Service (`src/services/statistical_analyzer.py`)
**This is the key fix - NO agent_framework imports.**
```python
"""Statistical analysis service using Modal code execution.
This module provides Modal-based statistical analysis WITHOUT depending on
agent_framework. This allows it to be used in the simple orchestrator mode
without requiring the magentic optional dependency.
The AnalysisAgent (in src/agents/) wraps this service for magentic mode.
"""
import asyncio
import re
from functools import partial
from typing import Any
from pydantic import BaseModel, Field
from pydantic_ai import Agent
from src.agent_factory.judges import get_model
from src.tools.code_execution import (
CodeExecutionError,
get_code_executor,
get_sandbox_library_prompt,
)
from src.utils.models import Evidence
class AnalysisResult(BaseModel):
"""Result of statistical analysis."""
verdict: str = Field(
description="SUPPORTED, REFUTED, or INCONCLUSIVE",
)
confidence: float = Field(ge=0.0, le=1.0, description="Confidence in verdict (0-1)")
statistical_evidence: str = Field(
description="Summary of statistical findings from code execution"
)
code_generated: str = Field(description="Python code that was executed")
execution_output: str = Field(description="Output from code execution")
key_findings: list[str] = Field(default_factory=list, description="Key takeaways")
limitations: list[str] = Field(default_factory=list, description="Limitations")
class StatisticalAnalyzer:
"""Performs statistical analysis using Modal code execution.
This service:
1. Generates Python code for statistical analysis using LLM
2. Executes code in Modal sandbox
3. Interprets results
4. Returns verdict (SUPPORTED/REFUTED/INCONCLUSIVE)
Note: This class has NO agent_framework dependency, making it safe
to use in the simple orchestrator without the magentic extra.
"""
def __init__(self) -> None:
"""Initialize the analyzer."""
self._code_executor: Any = None
self._agent: Agent[None, str] | None = None
def _get_code_executor(self) -> Any:
"""Lazy initialization of code executor."""
if self._code_executor is None:
self._code_executor = get_code_executor()
return self._code_executor
def _get_agent(self) -> Agent[None, str]:
"""Lazy initialization of LLM agent for code generation."""
if self._agent is None:
library_versions = get_sandbox_library_prompt()
self._agent = Agent(
model=get_model(),
output_type=str,
system_prompt=f"""You are a biomedical data scientist.
Generate Python code to analyze research evidence and test hypotheses.
Guidelines:
1. Use pandas, numpy, scipy.stats for analysis
2. Print clear, interpretable results
3. Include statistical tests (t-tests, chi-square, etc.)
4. Calculate effect sizes and confidence intervals
5. Keep code concise (<50 lines)
6. Set 'result' variable to SUPPORTED, REFUTED, or INCONCLUSIVE
Available libraries:
{library_versions}
Output format: Return ONLY executable Python code, no explanations.""",
)
return self._agent
async def analyze(
self,
query: str,
evidence: list[Evidence],
hypothesis: dict[str, Any] | None = None,
) -> AnalysisResult:
"""Run statistical analysis on evidence.
Args:
query: The research question
evidence: List of Evidence objects to analyze
hypothesis: Optional hypothesis dict with drug, target, pathway, effect
Returns:
AnalysisResult with verdict and statistics
"""
# Build analysis prompt
evidence_summary = self._summarize_evidence(evidence[:10])
hypothesis_text = ""
if hypothesis:
hypothesis_text = f"""
Hypothesis: {hypothesis.get('drug', 'Unknown')} β {hypothesis.get('target', '?')} β {hypothesis.get('pathway', '?')} β {hypothesis.get('effect', '?')}
Confidence: {hypothesis.get('confidence', 0.5):.0%}
"""
prompt = f"""Generate Python code to statistically analyze:
**Research Question**: {query}
{hypothesis_text}
**Evidence Summary**:
{evidence_summary}
Generate executable Python code to analyze this evidence."""
try:
# Generate code
agent = self._get_agent()
code_result = await agent.run(prompt)
generated_code = code_result.output
# Execute in Modal sandbox
loop = asyncio.get_running_loop()
executor = self._get_code_executor()
execution = await loop.run_in_executor(
None, partial(executor.execute, generated_code, timeout=120)
)
if not execution["success"]:
return AnalysisResult(
verdict="INCONCLUSIVE",
confidence=0.0,
statistical_evidence=f"Execution failed: {execution['error']}",
code_generated=generated_code,
execution_output=execution.get("stderr", ""),
key_findings=[],
limitations=["Code execution failed"],
)
# Interpret results
return self._interpret_results(generated_code, execution)
except CodeExecutionError as e:
return AnalysisResult(
verdict="INCONCLUSIVE",
confidence=0.0,
statistical_evidence=str(e),
code_generated="",
execution_output="",
key_findings=[],
limitations=[f"Analysis error: {e}"],
)
def _summarize_evidence(self, evidence: list[Evidence]) -> str:
"""Summarize evidence for code generation prompt."""
if not evidence:
return "No evidence available."
lines = []
for i, ev in enumerate(evidence[:5], 1):
lines.append(f"{i}. {ev.content[:200]}...")
lines.append(f" Source: {ev.citation.title}")
lines.append(f" Relevance: {ev.relevance:.0%}\n")
return "\n".join(lines)
def _interpret_results(
self,
code: str,
execution: dict[str, Any],
) -> AnalysisResult:
"""Interpret code execution results."""
stdout = execution["stdout"]
stdout_upper = stdout.upper()
# Extract verdict with robust word-boundary matching
verdict = "INCONCLUSIVE"
if re.search(r"\bSUPPORTED\b", stdout_upper) and not re.search(
r"\b(?:NOT|UN)SUPPORTED\b", stdout_upper
):
verdict = "SUPPORTED"
elif re.search(r"\bREFUTED\b", stdout_upper):
verdict = "REFUTED"
# Extract key findings
key_findings = []
for line in stdout.split("\n"):
line_lower = line.lower()
if any(kw in line_lower for kw in ["p-value", "significant", "effect", "mean"]):
key_findings.append(line.strip())
# Calculate confidence from p-values
confidence = self._calculate_confidence(stdout)
return AnalysisResult(
verdict=verdict,
confidence=confidence,
statistical_evidence=stdout.strip(),
code_generated=code,
execution_output=stdout,
key_findings=key_findings[:5],
limitations=[
"Analysis based on summary data only",
"Limited to available evidence",
"Statistical tests assume data independence",
],
)
def _calculate_confidence(self, output: str) -> float:
"""Calculate confidence based on statistical results."""
p_values = re.findall(r"p[-\s]?value[:\s]+(\d+\.?\d*)", output.lower())
if p_values:
try:
min_p = min(float(p) for p in p_values)
if min_p < 0.001:
return 0.95
elif min_p < 0.01:
return 0.90
elif min_p < 0.05:
return 0.80
else:
return 0.60
except ValueError:
pass
return 0.70 # Default
# Singleton for reuse
_analyzer: StatisticalAnalyzer | None = None
def get_statistical_analyzer() -> StatisticalAnalyzer:
"""Get or create singleton StatisticalAnalyzer instance."""
global _analyzer
if _analyzer is None:
_analyzer = StatisticalAnalyzer()
return _analyzer
```
### 5.3 Simple Orchestrator Update (`src/orchestrator.py`)
**Uses `StatisticalAnalyzer` directly - NO agent_framework import.**
```python
"""Main orchestrator with optional Modal analysis."""
from src.utils.config import settings
# ... existing imports ...
class Orchestrator:
"""Search-Judge-Analyze orchestration loop."""
def __init__(
self,
search_handler: SearchHandlerProtocol,
judge_handler: JudgeHandlerProtocol,
config: OrchestratorConfig | None = None,
enable_analysis: bool = False, # New parameter
) -> None:
self.search = search_handler
self.judge = judge_handler
self.config = config or OrchestratorConfig()
self.history: list[dict[str, Any]] = []
self._enable_analysis = enable_analysis and settings.modal_available
# Lazy-load analysis (NO agent_framework dependency!)
self._analyzer: Any = None
def _get_analyzer(self) -> Any:
"""Lazy initialization of StatisticalAnalyzer.
Note: This imports from src.services, NOT src.agents,
so it works without the magentic optional dependency.
"""
if self._analyzer is None:
from src.services.statistical_analyzer import get_statistical_analyzer
self._analyzer = get_statistical_analyzer()
return self._analyzer
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
"""Main orchestration loop with optional Modal analysis."""
# ... existing search/judge loop ...
# After judge says "synthesize", optionally run analysis
if self._enable_analysis and assessment.recommendation == "synthesize":
yield AgentEvent(
type="analyzing",
message="Running statistical analysis in Modal sandbox...",
data={},
iteration=iteration,
)
try:
analyzer = self._get_analyzer()
# Run Modal analysis (no agent_framework needed!)
analysis_result = await analyzer.analyze(
query=query,
evidence=all_evidence,
hypothesis=None, # Could add hypothesis generation later
)
yield AgentEvent(
type="analysis_complete",
message=f"Analysis verdict: {analysis_result.verdict}",
data=analysis_result.model_dump(),
iteration=iteration,
)
except Exception as e:
yield AgentEvent(
type="error",
message=f"Modal analysis failed: {e}",
data={"error": str(e)},
iteration=iteration,
)
# Continue to synthesis...
```
### 5.4 Refactor AnalysisAgent (`src/agents/analysis_agent.py`)
**Wrap `StatisticalAnalyzer` for magentic mode.**
```python
"""Analysis agent for statistical analysis using Modal code execution.
This agent wraps StatisticalAnalyzer for use in magentic multi-agent mode.
The core logic is in src/services/statistical_analyzer.py to avoid
coupling agent_framework to the simple orchestrator.
"""
from collections.abc import AsyncIterable
from typing import TYPE_CHECKING, Any
from agent_framework import (
AgentRunResponse,
AgentRunResponseUpdate,
AgentThread,
BaseAgent,
ChatMessage,
Role,
)
from src.services.statistical_analyzer import (
AnalysisResult,
get_statistical_analyzer,
)
from src.utils.models import Evidence
if TYPE_CHECKING:
from src.services.embeddings import EmbeddingService
class AnalysisAgent(BaseAgent): # type: ignore[misc]
"""Wraps StatisticalAnalyzer for magentic multi-agent mode."""
def __init__(
self,
evidence_store: dict[str, Any],
embedding_service: "EmbeddingService | None" = None,
) -> None:
super().__init__(
name="AnalysisAgent",
description="Performs statistical analysis using Modal sandbox",
)
self._evidence_store = evidence_store
self._embeddings = embedding_service
self._analyzer = get_statistical_analyzer()
async def run(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AgentRunResponse:
"""Analyze evidence and return verdict."""
query = self._extract_query(messages)
hypotheses = self._evidence_store.get("hypotheses", [])
evidence = self._evidence_store.get("current", [])
if not evidence:
return self._error_response("No evidence available.")
# Get primary hypothesis if available
hypothesis_dict = None
if hypotheses:
h = hypotheses[0]
hypothesis_dict = {
"drug": getattr(h, "drug", "Unknown"),
"target": getattr(h, "target", "?"),
"pathway": getattr(h, "pathway", "?"),
"effect": getattr(h, "effect", "?"),
"confidence": getattr(h, "confidence", 0.5),
}
# Delegate to StatisticalAnalyzer
result = await self._analyzer.analyze(
query=query,
evidence=evidence,
hypothesis=hypothesis_dict,
)
# Store in shared context
self._evidence_store["analysis"] = result.model_dump()
# Format response
response_text = self._format_response(result)
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text=response_text)],
response_id=f"analysis-{result.verdict.lower()}",
additional_properties={"analysis": result.model_dump()},
)
def _format_response(self, result: AnalysisResult) -> str:
"""Format analysis result as markdown."""
lines = [
"## Statistical Analysis Complete\n",
f"### Verdict: **{result.verdict}**",
f"**Confidence**: {result.confidence:.0%}\n",
"### Key Findings",
]
for finding in result.key_findings:
lines.append(f"- {finding}")
lines.extend([
"\n### Statistical Evidence",
"```",
result.statistical_evidence,
"```",
])
return "\n".join(lines)
def _error_response(self, message: str) -> AgentRunResponse:
"""Create error response."""
return AgentRunResponse(
messages=[ChatMessage(role=Role.ASSISTANT, text=f"**Error**: {message}")],
response_id="analysis-error",
)
def _extract_query(
self, messages: str | ChatMessage | list[str] | list[ChatMessage] | None
) -> str:
"""Extract query from messages."""
if isinstance(messages, str):
return messages
elif isinstance(messages, ChatMessage):
return messages.text or ""
elif isinstance(messages, list):
for msg in reversed(messages):
if isinstance(msg, ChatMessage) and msg.role == Role.USER:
return msg.text or ""
elif isinstance(msg, str):
return msg
return ""
async def run_stream(
self,
messages: str | ChatMessage | list[str] | list[ChatMessage] | None = None,
*,
thread: AgentThread | None = None,
**kwargs: Any,
) -> AsyncIterable[AgentRunResponseUpdate]:
"""Streaming wrapper."""
result = await self.run(messages, thread=thread, **kwargs)
yield AgentRunResponseUpdate(messages=result.messages, response_id=result.response_id)
```
### 5.5 MCP Tool for Modal Analysis (`src/mcp_tools.py`)
Add to existing MCP tools:
```python
async def analyze_hypothesis(
drug: str,
condition: str,
evidence_summary: str,
) -> str:
"""Perform statistical analysis of drug repurposing hypothesis using Modal.
Executes AI-generated Python code in a secure Modal sandbox to analyze
the statistical evidence for a drug repurposing hypothesis.
Args:
drug: The drug being evaluated (e.g., "metformin")
condition: The target condition (e.g., "Alzheimer's disease")
evidence_summary: Summary of evidence to analyze
Returns:
Analysis result with verdict (SUPPORTED/REFUTED/INCONCLUSIVE) and statistics
"""
from src.services.statistical_analyzer import get_statistical_analyzer
from src.utils.config import settings
from src.utils.models import Citation, Evidence
if not settings.modal_available:
return "Error: Modal credentials not configured. Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET."
# Create evidence from summary
evidence = [
Evidence(
content=evidence_summary,
citation=Citation(
source="pubmed",
title=f"Evidence for {drug} in {condition}",
url="https://example.com",
date="2024-01-01",
authors=["User Provided"],
),
relevance=0.9,
)
]
analyzer = get_statistical_analyzer()
result = await analyzer.analyze(
query=f"Can {drug} treat {condition}?",
evidence=evidence,
hypothesis={"drug": drug, "target": "unknown", "pathway": "unknown", "effect": condition},
)
return f"""## Statistical Analysis: {drug} for {condition}
### Verdict: **{result.verdict}**
**Confidence**: {result.confidence:.0%}
### Key Findings
{chr(10).join(f"- {f}" for f in result.key_findings) or "- No specific findings extracted"}
### Execution Output
```
{result.execution_output}
```
### Generated Code
```python
{result.code_generated}
```
**Executed in Modal Sandbox** - Isolated, secure, reproducible.
"""
```
### 5.6 Demo Scripts
#### `examples/modal_demo/verify_sandbox.py`
```python
#!/usr/bin/env python3
"""Verify that Modal sandbox is properly isolated.
This script proves to judges that code runs in Modal, not locally.
NO agent_framework dependency - uses only src.tools.code_execution.
Usage:
uv run python examples/modal_demo/verify_sandbox.py
"""
import asyncio
from functools import partial
from src.tools.code_execution import get_code_executor
from src.utils.config import settings
async def main() -> None:
"""Verify Modal sandbox isolation."""
if not settings.modal_available:
print("Error: Modal credentials not configured.")
print("Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env")
return
executor = get_code_executor()
loop = asyncio.get_running_loop()
print("=" * 60)
print("Modal Sandbox Isolation Verification")
print("=" * 60 + "\n")
# Test 1: Hostname
print("Test 1: Check hostname (should NOT be your machine)")
code1 = "import socket; print(f'Hostname: {socket.gethostname()}')"
result1 = await loop.run_in_executor(None, partial(executor.execute, code1))
print(f" {result1['stdout'].strip()}\n")
# Test 2: Scientific libraries
print("Test 2: Verify scientific libraries")
code2 = """
import pandas as pd
import numpy as np
import scipy
print(f"pandas: {pd.__version__}")
print(f"numpy: {np.__version__}")
print(f"scipy: {scipy.__version__}")
"""
result2 = await loop.run_in_executor(None, partial(executor.execute, code2))
print(f" {result2['stdout'].strip()}\n")
# Test 3: Network blocked
print("Test 3: Verify network isolation")
code3 = """
import urllib.request
try:
urllib.request.urlopen("https://google.com", timeout=2)
print("Network: ALLOWED (unexpected!)")
except Exception:
print("Network: BLOCKED (as expected)")
"""
result3 = await loop.run_in_executor(None, partial(executor.execute, code3))
print(f" {result3['stdout'].strip()}\n")
# Test 4: Real statistics
print("Test 4: Execute statistical analysis")
code4 = """
import pandas as pd
import scipy.stats as stats
data = pd.DataFrame({'effect': [0.42, 0.38, 0.51]})
mean = data['effect'].mean()
t_stat, p_val = stats.ttest_1samp(data['effect'], 0)
print(f"Mean Effect: {mean:.3f}")
print(f"P-value: {p_val:.4f}")
print(f"Verdict: {'SUPPORTED' if p_val < 0.05 else 'INCONCLUSIVE'}")
"""
result4 = await loop.run_in_executor(None, partial(executor.execute, code4))
print(f" {result4['stdout'].strip()}\n")
print("=" * 60)
print("All tests complete - Modal sandbox verified!")
print("=" * 60)
if __name__ == "__main__":
asyncio.run(main())
```
#### `examples/modal_demo/run_analysis.py`
```python
#!/usr/bin/env python3
"""Demo: Modal-powered statistical analysis.
This script uses StatisticalAnalyzer directly (NO agent_framework dependency).
Usage:
uv run python examples/modal_demo/run_analysis.py "metformin alzheimer"
"""
import argparse
import asyncio
import os
import sys
from src.services.statistical_analyzer import get_statistical_analyzer
from src.tools.pubmed import PubMedTool
from src.utils.config import settings
async def main() -> None:
"""Run the Modal analysis demo."""
parser = argparse.ArgumentParser(description="Modal Analysis Demo")
parser.add_argument("query", help="Research query")
args = parser.parse_args()
if not settings.modal_available:
print("Error: Modal credentials not configured.")
sys.exit(1)
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
print("Error: No LLM API key found.")
sys.exit(1)
print(f"\n{'=' * 60}")
print("DeepCritical Modal Analysis Demo")
print(f"Query: {args.query}")
print(f"{'=' * 60}\n")
# Step 1: Gather Evidence
print("Step 1: Gathering evidence from PubMed...")
pubmed = PubMedTool()
evidence = await pubmed.search(args.query, max_results=5)
print(f" Found {len(evidence)} papers\n")
# Step 2: Run Modal Analysis
print("Step 2: Running statistical analysis in Modal sandbox...")
analyzer = get_statistical_analyzer()
result = await analyzer.analyze(query=args.query, evidence=evidence)
# Step 3: Display Results
print("\n" + "=" * 60)
print("ANALYSIS RESULTS")
print("=" * 60)
print(f"\nVerdict: {result.verdict}")
print(f"Confidence: {result.confidence:.0%}")
print("\nKey Findings:")
for finding in result.key_findings:
print(f" - {finding}")
print("\n[Demo Complete - Code executed in Modal, not locally]")
if __name__ == "__main__":
asyncio.run(main())
```
---
## 6. TDD Test Suite
### 6.1 Unit Tests (`tests/unit/services/test_statistical_analyzer.py`)
```python
"""Unit tests for StatisticalAnalyzer service."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from src.services.statistical_analyzer import (
AnalysisResult,
StatisticalAnalyzer,
get_statistical_analyzer,
)
from src.utils.models import Citation, Evidence
@pytest.fixture
def sample_evidence() -> list[Evidence]:
"""Sample evidence for testing."""
return [
Evidence(
content="Metformin shows effect size of 0.45.",
citation=Citation(
source="pubmed",
title="Metformin Study",
url="https://pubmed.ncbi.nlm.nih.gov/12345/",
date="2024-01-15",
authors=["Smith J"],
),
relevance=0.9,
)
]
class TestStatisticalAnalyzer:
"""Tests for StatisticalAnalyzer (no agent_framework dependency)."""
def test_no_agent_framework_import(self) -> None:
"""StatisticalAnalyzer must NOT import agent_framework."""
import src.services.statistical_analyzer as module
# Check module doesn't import agent_framework
source = open(module.__file__).read()
assert "agent_framework" not in source
assert "BaseAgent" not in source
@pytest.mark.asyncio
async def test_analyze_returns_result(
self, sample_evidence: list[Evidence]
) -> None:
"""analyze() should return AnalysisResult."""
analyzer = StatisticalAnalyzer()
with patch.object(analyzer, "_get_agent") as mock_agent, \
patch.object(analyzer, "_get_code_executor") as mock_executor:
# Mock LLM
mock_agent.return_value.run = AsyncMock(
return_value=MagicMock(output="print('SUPPORTED')")
)
# Mock Modal
mock_executor.return_value.execute.return_value = {
"stdout": "SUPPORTED\np-value: 0.01",
"stderr": "",
"success": True,
}
result = await analyzer.analyze("test query", sample_evidence)
assert isinstance(result, AnalysisResult)
assert result.verdict == "SUPPORTED"
def test_singleton(self) -> None:
"""get_statistical_analyzer should return singleton."""
a1 = get_statistical_analyzer()
a2 = get_statistical_analyzer()
assert a1 is a2
class TestAnalysisResult:
"""Tests for AnalysisResult model."""
def test_verdict_values(self) -> None:
"""Verdict should be one of the expected values."""
for verdict in ["SUPPORTED", "REFUTED", "INCONCLUSIVE"]:
result = AnalysisResult(
verdict=verdict,
confidence=0.8,
statistical_evidence="test",
code_generated="print('test')",
execution_output="test",
)
assert result.verdict == verdict
def test_confidence_bounds(self) -> None:
"""Confidence must be 0.0-1.0."""
with pytest.raises(ValueError):
AnalysisResult(
verdict="SUPPORTED",
confidence=1.5, # Invalid
statistical_evidence="test",
code_generated="test",
execution_output="test",
)
```
### 6.2 Integration Test (`tests/integration/test_modal.py`)
```python
"""Integration tests for Modal (requires credentials)."""
import pytest
from src.utils.config import settings
@pytest.mark.integration
@pytest.mark.skipif(not settings.modal_available, reason="Modal not configured")
class TestModalIntegration:
"""Integration tests requiring Modal credentials."""
@pytest.mark.asyncio
async def test_sandbox_executes_code(self) -> None:
"""Modal sandbox should execute Python code."""
import asyncio
from functools import partial
from src.tools.code_execution import get_code_executor
executor = get_code_executor()
code = "import pandas as pd; print(pd.DataFrame({'a': [1,2,3]})['a'].sum())"
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(
None, partial(executor.execute, code, timeout=30)
)
assert result["success"]
assert "6" in result["stdout"]
@pytest.mark.asyncio
async def test_statistical_analyzer_works(self) -> None:
"""StatisticalAnalyzer should work end-to-end."""
from src.services.statistical_analyzer import get_statistical_analyzer
from src.utils.models import Citation, Evidence
evidence = [
Evidence(
content="Drug shows 40% improvement in trial.",
citation=Citation(
source="pubmed",
title="Test",
url="https://test.com",
date="2024-01-01",
authors=["Test"],
),
relevance=0.9,
)
]
analyzer = get_statistical_analyzer()
result = await analyzer.analyze("test drug efficacy", evidence)
assert result.verdict in ["SUPPORTED", "REFUTED", "INCONCLUSIVE"]
assert 0.0 <= result.confidence <= 1.0
```
---
## 7. Verification Commands
```bash
# 1. Verify NO agent_framework in StatisticalAnalyzer
grep -r "agent_framework" src/services/statistical_analyzer.py
# Should return nothing!
# 2. Run unit tests (no Modal needed)
uv run pytest tests/unit/services/test_statistical_analyzer.py -v
# 3. Run verification script (requires Modal)
uv run python examples/modal_demo/verify_sandbox.py
# 4. Run analysis demo (requires Modal + LLM)
uv run python examples/modal_demo/run_analysis.py "metformin alzheimer"
# 5. Run integration tests
uv run pytest tests/integration/test_modal.py -v -m integration
# 6. Full test suite
make check
```
---
## 8. Definition of Done
Phase 13 is **COMPLETE** when:
- [ ] `src/services/statistical_analyzer.py` created (NO agent_framework)
- [ ] `src/utils/config.py` has `enable_modal_analysis` setting
- [ ] `src/orchestrator.py` uses `StatisticalAnalyzer` directly
- [ ] `src/agents/analysis_agent.py` refactored to wrap `StatisticalAnalyzer`
- [ ] `src/mcp_tools.py` has `analyze_hypothesis` tool
- [ ] `examples/modal_demo/verify_sandbox.py` working
- [ ] `examples/modal_demo/run_analysis.py` working
- [ ] Unit tests pass WITHOUT magentic extra installed
- [ ] Integration tests pass WITH Modal credentials
- [ ] All lints pass
---
## 9. Architecture After Phase 13
```text
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β MCP Clients β
β (Claude Desktop, Cursor, etc.) β
βββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββ
β MCP Protocol
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Gradio App + MCP Server β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β MCP Tools: search_pubmed, search_trials, search_biorxiv β β
β β search_all, analyze_hypothesis β β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββ΄ββββββββββββββββββββ
β β
βΌ βΌ
βββββββββββββββββββββββββ βββββββββββββββββββββββββββββ
β Simple Orchestrator β β Magentic Orchestrator β
β (no agent_framework) β β (with agent_framework) β
β β β β
β SearchHandler β β SearchAgent β
β JudgeHandler β β JudgeAgent β
β StatisticalAnalyzer ββΌβββββββββββββΌβ AnalysisAgent ββββββββββββ€
β β β (wraps StatisticalAnalyzer)
βββββββββββββ¬ββββββββββββ βββββββββββββββββββββββββββββ
β
βΌ
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β StatisticalAnalyzer β
β (src/services/statistical_analyzer.py) β
β NO agent_framework dependency β
β β
β 1. Generate code with pydantic-ai β
β 2. Execute in Modal sandbox β
β 3. Return AnalysisResult β
βββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Modal Sandbox β
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β - pandas, numpy, scipy, sklearn, statsmodels β β
β β - Network: BLOCKED β β
β β - Filesystem: ISOLATED β β
β β - Timeout: ENFORCED β β
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
**This is the dependency-safe Modal stack.**
---
## 10. Files Summary
| File | Action | Purpose |
|------|--------|---------|
| `src/services/statistical_analyzer.py` | **CREATE** | Core analysis (no agent_framework) |
| `src/utils/config.py` | MODIFY | Add `enable_modal_analysis` |
| `src/orchestrator.py` | MODIFY | Use `StatisticalAnalyzer` |
| `src/agents/analysis_agent.py` | MODIFY | Wrap `StatisticalAnalyzer` |
| `src/mcp_tools.py` | MODIFY | Add `analyze_hypothesis` |
| `examples/modal_demo/verify_sandbox.py` | CREATE | Sandbox verification |
| `examples/modal_demo/run_analysis.py` | CREATE | Demo script |
| `tests/unit/services/test_statistical_analyzer.py` | CREATE | Unit tests |
| `tests/integration/test_modal.py` | CREATE | Integration tests |
**Key Fix**: `StatisticalAnalyzer` has ZERO agent_framework imports, making it safe for the simple orchestrator.
|