Spaces:
Running
Running
Merge pull request #29 from The-Obstacle-Is-The-Way/claude/debug-gradio-mock-data-01MDfoUPcbfZ7FLootfhe8zs
Browse files- src/agent_factory/judges.py +85 -16
- src/app.py +95 -11
- tests/unit/agent_factory/test_judges.py +4 -1
- tests/unit/tools/test_clinicaltrials.py +13 -0
src/agent_factory/judges.py
CHANGED
|
@@ -148,9 +148,10 @@ class JudgeHandler:
|
|
| 148 |
|
| 149 |
class MockJudgeHandler:
|
| 150 |
"""
|
| 151 |
-
Mock JudgeHandler for
|
| 152 |
|
| 153 |
-
|
|
|
|
| 154 |
"""
|
| 155 |
|
| 156 |
def __init__(self, mock_response: JudgeAssessment | None = None) -> None:
|
|
@@ -158,19 +159,64 @@ class MockJudgeHandler:
|
|
| 158 |
Initialize with optional mock response.
|
| 159 |
|
| 160 |
Args:
|
| 161 |
-
mock_response: The assessment to return. If None,
|
| 162 |
"""
|
| 163 |
self.mock_response = mock_response
|
| 164 |
self.call_count = 0
|
| 165 |
self.last_question: str | None = None
|
| 166 |
self.last_evidence: list[Evidence] | None = None
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
async def assess(
|
| 169 |
self,
|
| 170 |
question: str,
|
| 171 |
evidence: list[Evidence],
|
| 172 |
) -> JudgeAssessment:
|
| 173 |
-
"""Return
|
| 174 |
self.call_count += 1
|
| 175 |
self.last_question = question
|
| 176 |
self.last_evidence = evidence
|
|
@@ -179,19 +225,42 @@ class MockJudgeHandler:
|
|
| 179 |
return self.mock_response
|
| 180 |
|
| 181 |
min_evidence = 3
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
return JudgeAssessment(
|
| 184 |
details=AssessmentDetails(
|
| 185 |
-
mechanism_score=
|
| 186 |
-
mechanism_reasoning=
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
),
|
| 192 |
-
sufficient=len(evidence) >= min_evidence,
|
| 193 |
-
confidence=0.75,
|
| 194 |
-
recommendation="synthesize" if len(evidence) >= min_evidence else "continue",
|
| 195 |
-
next_search_queries=["query 1", "query 2"] if len(evidence) < min_evidence else [],
|
| 196 |
-
reasoning="Mock assessment for testing purposes",
|
| 197 |
)
|
|
|
|
| 148 |
|
| 149 |
class MockJudgeHandler:
|
| 150 |
"""
|
| 151 |
+
Mock JudgeHandler for demo mode without LLM calls.
|
| 152 |
|
| 153 |
+
Extracts meaningful information from real search results
|
| 154 |
+
to provide a useful demo experience without requiring API keys.
|
| 155 |
"""
|
| 156 |
|
| 157 |
def __init__(self, mock_response: JudgeAssessment | None = None) -> None:
|
|
|
|
| 159 |
Initialize with optional mock response.
|
| 160 |
|
| 161 |
Args:
|
| 162 |
+
mock_response: The assessment to return. If None, extracts from evidence.
|
| 163 |
"""
|
| 164 |
self.mock_response = mock_response
|
| 165 |
self.call_count = 0
|
| 166 |
self.last_question: str | None = None
|
| 167 |
self.last_evidence: list[Evidence] | None = None
|
| 168 |
|
| 169 |
+
def _extract_key_findings(self, evidence: list[Evidence], max_findings: int = 5) -> list[str]:
|
| 170 |
+
"""Extract key findings from evidence titles."""
|
| 171 |
+
findings = []
|
| 172 |
+
for e in evidence[:max_findings]:
|
| 173 |
+
# Use first 150 chars of title as a finding
|
| 174 |
+
title = e.citation.title
|
| 175 |
+
if len(title) > 150:
|
| 176 |
+
title = title[:147] + "..."
|
| 177 |
+
findings.append(title)
|
| 178 |
+
return findings if findings else ["No specific findings extracted (demo mode)"]
|
| 179 |
+
|
| 180 |
+
def _extract_drug_candidates(self, question: str, evidence: list[Evidence]) -> list[str]:
|
| 181 |
+
"""Extract potential drug names from question and evidence."""
|
| 182 |
+
# Common drug-related keywords to look for
|
| 183 |
+
candidates = set()
|
| 184 |
+
|
| 185 |
+
# Extract from question (simple heuristic)
|
| 186 |
+
question_words = question.lower().split()
|
| 187 |
+
for word in question_words:
|
| 188 |
+
# Skip common words, keep potential drug names
|
| 189 |
+
if len(word) > 3 and word not in {
|
| 190 |
+
"what", "which", "could", "drugs", "drug", "medications",
|
| 191 |
+
"medicine", "treat", "treatment", "help", "best", "effective",
|
| 192 |
+
"repurposed", "repurposing", "disease", "condition", "therapy",
|
| 193 |
+
}:
|
| 194 |
+
# Capitalize as potential drug name
|
| 195 |
+
candidates.add(word.capitalize())
|
| 196 |
+
|
| 197 |
+
# Extract from evidence titles (look for capitalized terms)
|
| 198 |
+
for e in evidence[:10]:
|
| 199 |
+
words = e.citation.title.split()
|
| 200 |
+
for word in words:
|
| 201 |
+
# Look for capitalized words that might be drug names
|
| 202 |
+
cleaned = word.strip(".,;:()[]")
|
| 203 |
+
if (
|
| 204 |
+
len(cleaned) > 3
|
| 205 |
+
and cleaned[0].isupper()
|
| 206 |
+
and cleaned.lower() not in {"the", "and", "for", "with", "from"}
|
| 207 |
+
):
|
| 208 |
+
candidates.add(cleaned)
|
| 209 |
+
|
| 210 |
+
# Return top candidates or placeholder
|
| 211 |
+
candidate_list = list(candidates)[:5]
|
| 212 |
+
return candidate_list if candidate_list else ["See evidence below for potential candidates"]
|
| 213 |
+
|
| 214 |
async def assess(
|
| 215 |
self,
|
| 216 |
question: str,
|
| 217 |
evidence: list[Evidence],
|
| 218 |
) -> JudgeAssessment:
|
| 219 |
+
"""Return assessment based on actual evidence (demo mode)."""
|
| 220 |
self.call_count += 1
|
| 221 |
self.last_question = question
|
| 222 |
self.last_evidence = evidence
|
|
|
|
| 225 |
return self.mock_response
|
| 226 |
|
| 227 |
min_evidence = 3
|
| 228 |
+
evidence_count = len(evidence)
|
| 229 |
+
|
| 230 |
+
# Extract meaningful data from actual evidence
|
| 231 |
+
drug_candidates = self._extract_drug_candidates(question, evidence)
|
| 232 |
+
key_findings = self._extract_key_findings(evidence)
|
| 233 |
+
|
| 234 |
+
# Calculate scores based on evidence quantity
|
| 235 |
+
mechanism_score = min(10, evidence_count * 2) if evidence_count > 0 else 0
|
| 236 |
+
clinical_score = min(10, evidence_count) if evidence_count > 0 else 0
|
| 237 |
+
|
| 238 |
return JudgeAssessment(
|
| 239 |
details=AssessmentDetails(
|
| 240 |
+
mechanism_score=mechanism_score,
|
| 241 |
+
mechanism_reasoning=(
|
| 242 |
+
f"Demo mode: Found {evidence_count} sources. "
|
| 243 |
+
"Configure LLM API key for detailed mechanism analysis."
|
| 244 |
+
),
|
| 245 |
+
clinical_evidence_score=clinical_score,
|
| 246 |
+
clinical_reasoning=(
|
| 247 |
+
f"Demo mode: {evidence_count} sources retrieved from PubMed, "
|
| 248 |
+
"ClinicalTrials.gov, and bioRxiv. Full analysis requires LLM API key."
|
| 249 |
+
),
|
| 250 |
+
drug_candidates=drug_candidates,
|
| 251 |
+
key_findings=key_findings,
|
| 252 |
+
),
|
| 253 |
+
sufficient=evidence_count >= min_evidence,
|
| 254 |
+
confidence=min(0.5, evidence_count * 0.1) if evidence_count > 0 else 0.0,
|
| 255 |
+
recommendation="synthesize" if evidence_count >= min_evidence else "continue",
|
| 256 |
+
next_search_queries=(
|
| 257 |
+
[f"{question} mechanism", f"{question} clinical trials"]
|
| 258 |
+
if evidence_count < min_evidence
|
| 259 |
+
else []
|
| 260 |
+
),
|
| 261 |
+
reasoning=(
|
| 262 |
+
f"Demo mode assessment based on {evidence_count} real search results. "
|
| 263 |
+
"For AI-powered analysis with drug candidate identification and "
|
| 264 |
+
"evidence synthesis, configure OPENAI_API_KEY or ANTHROPIC_API_KEY."
|
| 265 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
)
|
src/app.py
CHANGED
|
@@ -5,6 +5,10 @@ from collections.abc import AsyncGenerator
|
|
| 5 |
from typing import Any
|
| 6 |
|
| 7 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from src.agent_factory.judges import JudgeHandler, MockJudgeHandler
|
| 10 |
from src.mcp_tools import (
|
|
@@ -19,16 +23,24 @@ from src.tools.biorxiv import BioRxivTool
|
|
| 19 |
from src.tools.clinicaltrials import ClinicalTrialsTool
|
| 20 |
from src.tools.pubmed import PubMedTool
|
| 21 |
from src.tools.search_handler import SearchHandler
|
|
|
|
| 22 |
from src.utils.models import OrchestratorConfig
|
| 23 |
|
| 24 |
|
| 25 |
-
def configure_orchestrator(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
"""
|
| 27 |
Create an orchestrator instance.
|
| 28 |
|
| 29 |
Args:
|
| 30 |
use_mock: If True, use MockJudgeHandler (no API key needed)
|
| 31 |
mode: Orchestrator mode ("simple" or "magentic")
|
|
|
|
|
|
|
| 32 |
|
| 33 |
Returns:
|
| 34 |
Configured Orchestrator instance
|
|
@@ -50,7 +62,16 @@ def configure_orchestrator(use_mock: bool = False, mode: str = "simple") -> Any:
|
|
| 50 |
if use_mock:
|
| 51 |
judge_handler = MockJudgeHandler()
|
| 52 |
else:
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
return create_orchestrator(
|
| 56 |
search_handler=search_handler,
|
|
@@ -64,6 +85,8 @@ async def research_agent(
|
|
| 64 |
message: str,
|
| 65 |
history: list[dict[str, Any]],
|
| 66 |
mode: str = "simple",
|
|
|
|
|
|
|
| 67 |
) -> AsyncGenerator[str, None]:
|
| 68 |
"""
|
| 69 |
Gradio chat function that runs the research agent.
|
|
@@ -72,6 +95,8 @@ async def research_agent(
|
|
| 72 |
message: User's research question
|
| 73 |
history: Chat history (Gradio format)
|
| 74 |
mode: Orchestrator mode ("simple" or "magentic")
|
|
|
|
|
|
|
| 75 |
|
| 76 |
Yields:
|
| 77 |
Markdown-formatted responses for streaming
|
|
@@ -80,30 +105,57 @@ async def research_agent(
|
|
| 80 |
yield "Please enter a research question."
|
| 81 |
return
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
# Decide whether to use real LLMs or mock based on mode and available keys
|
| 84 |
has_openai = bool(os.getenv("OPENAI_API_KEY"))
|
| 85 |
has_anthropic = bool(os.getenv("ANTHROPIC_API_KEY"))
|
|
|
|
| 86 |
|
| 87 |
if mode == "magentic":
|
| 88 |
# Magentic currently supports OpenAI only
|
| 89 |
-
use_mock = not has_openai
|
| 90 |
else:
|
| 91 |
# Simple mode can work with either provider
|
| 92 |
-
use_mock = not (has_openai or has_anthropic)
|
| 93 |
|
| 94 |
# If magentic mode requested but no OpenAI key, fallback/warn
|
| 95 |
if mode == "magentic" and use_mock:
|
| 96 |
yield (
|
| 97 |
"β οΈ **Warning**: Magentic mode requires OpenAI API key. "
|
| 98 |
-
"Falling back to
|
| 99 |
)
|
| 100 |
mode = "simple"
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
# Run the agent and stream events
|
| 103 |
response_parts: list[str] = []
|
| 104 |
|
| 105 |
try:
|
| 106 |
-
orchestrator = configure_orchestrator(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
async for event in orchestrator.run(message):
|
| 108 |
# Format event as markdown
|
| 109 |
event_md = event.to_markdown()
|
|
@@ -148,10 +200,30 @@ def create_demo() -> Any:
|
|
| 148 |
fn=research_agent,
|
| 149 |
title="",
|
| 150 |
examples=[
|
| 151 |
-
[
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
],
|
| 156 |
additional_inputs=[
|
| 157 |
gr.Radio(
|
|
@@ -159,7 +231,19 @@ def create_demo() -> Any:
|
|
| 159 |
value="simple",
|
| 160 |
label="Orchestrator Mode",
|
| 161 |
info="Simple: Linear (OpenAI/Anthropic) | Magentic: Multi-Agent (OpenAI)",
|
| 162 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
],
|
| 164 |
)
|
| 165 |
|
|
|
|
| 5 |
from typing import Any
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
+
from pydantic_ai.models.anthropic import AnthropicModel
|
| 9 |
+
from pydantic_ai.models.openai import OpenAIModel
|
| 10 |
+
from pydantic_ai.providers.anthropic import AnthropicProvider
|
| 11 |
+
from pydantic_ai.providers.openai import OpenAIProvider
|
| 12 |
|
| 13 |
from src.agent_factory.judges import JudgeHandler, MockJudgeHandler
|
| 14 |
from src.mcp_tools import (
|
|
|
|
| 23 |
from src.tools.clinicaltrials import ClinicalTrialsTool
|
| 24 |
from src.tools.pubmed import PubMedTool
|
| 25 |
from src.tools.search_handler import SearchHandler
|
| 26 |
+
from src.utils.config import settings
|
| 27 |
from src.utils.models import OrchestratorConfig
|
| 28 |
|
| 29 |
|
| 30 |
+
def configure_orchestrator(
|
| 31 |
+
use_mock: bool = False,
|
| 32 |
+
mode: str = "simple",
|
| 33 |
+
user_api_key: str | None = None,
|
| 34 |
+
api_provider: str = "openai",
|
| 35 |
+
) -> Any:
|
| 36 |
"""
|
| 37 |
Create an orchestrator instance.
|
| 38 |
|
| 39 |
Args:
|
| 40 |
use_mock: If True, use MockJudgeHandler (no API key needed)
|
| 41 |
mode: Orchestrator mode ("simple" or "magentic")
|
| 42 |
+
user_api_key: Optional user-provided API key (BYOK)
|
| 43 |
+
api_provider: API provider ("openai" or "anthropic")
|
| 44 |
|
| 45 |
Returns:
|
| 46 |
Configured Orchestrator instance
|
|
|
|
| 62 |
if use_mock:
|
| 63 |
judge_handler = MockJudgeHandler()
|
| 64 |
else:
|
| 65 |
+
# Create model with user's API key if provided
|
| 66 |
+
model: AnthropicModel | OpenAIModel | None = None
|
| 67 |
+
if user_api_key:
|
| 68 |
+
if api_provider == "anthropic":
|
| 69 |
+
anthropic_provider = AnthropicProvider(api_key=user_api_key)
|
| 70 |
+
model = AnthropicModel(settings.anthropic_model, provider=anthropic_provider)
|
| 71 |
+
else:
|
| 72 |
+
openai_provider = OpenAIProvider(api_key=user_api_key)
|
| 73 |
+
model = OpenAIModel(settings.openai_model, provider=openai_provider)
|
| 74 |
+
judge_handler = JudgeHandler(model=model)
|
| 75 |
|
| 76 |
return create_orchestrator(
|
| 77 |
search_handler=search_handler,
|
|
|
|
| 85 |
message: str,
|
| 86 |
history: list[dict[str, Any]],
|
| 87 |
mode: str = "simple",
|
| 88 |
+
api_key: str = "",
|
| 89 |
+
api_provider: str = "openai",
|
| 90 |
) -> AsyncGenerator[str, None]:
|
| 91 |
"""
|
| 92 |
Gradio chat function that runs the research agent.
|
|
|
|
| 95 |
message: User's research question
|
| 96 |
history: Chat history (Gradio format)
|
| 97 |
mode: Orchestrator mode ("simple" or "magentic")
|
| 98 |
+
api_key: Optional user-provided API key (BYOK - Bring Your Own Key)
|
| 99 |
+
api_provider: API provider ("openai" or "anthropic")
|
| 100 |
|
| 101 |
Yields:
|
| 102 |
Markdown-formatted responses for streaming
|
|
|
|
| 105 |
yield "Please enter a research question."
|
| 106 |
return
|
| 107 |
|
| 108 |
+
# Clean user-provided API key
|
| 109 |
+
user_api_key = api_key.strip() if api_key else None
|
| 110 |
+
|
| 111 |
# Decide whether to use real LLMs or mock based on mode and available keys
|
| 112 |
has_openai = bool(os.getenv("OPENAI_API_KEY"))
|
| 113 |
has_anthropic = bool(os.getenv("ANTHROPIC_API_KEY"))
|
| 114 |
+
has_user_key = bool(user_api_key)
|
| 115 |
|
| 116 |
if mode == "magentic":
|
| 117 |
# Magentic currently supports OpenAI only
|
| 118 |
+
use_mock = not (has_openai or (has_user_key and api_provider == "openai"))
|
| 119 |
else:
|
| 120 |
# Simple mode can work with either provider
|
| 121 |
+
use_mock = not (has_openai or has_anthropic or has_user_key)
|
| 122 |
|
| 123 |
# If magentic mode requested but no OpenAI key, fallback/warn
|
| 124 |
if mode == "magentic" and use_mock:
|
| 125 |
yield (
|
| 126 |
"β οΈ **Warning**: Magentic mode requires OpenAI API key. "
|
| 127 |
+
"Falling back to demo mode.\n\n"
|
| 128 |
)
|
| 129 |
mode = "simple"
|
| 130 |
|
| 131 |
+
# Inform user about their key being used
|
| 132 |
+
if has_user_key and not use_mock:
|
| 133 |
+
yield (
|
| 134 |
+
f"π **Using your {api_provider.upper()} API key** - "
|
| 135 |
+
"Your key is used only for this session and is never stored.\n\n"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Warn users when running in demo mode (no LLM keys)
|
| 139 |
+
if use_mock:
|
| 140 |
+
yield (
|
| 141 |
+
"π¬ **Demo Mode**: Running with real biomedical searches but without "
|
| 142 |
+
"LLM-powered analysis.\n\n"
|
| 143 |
+
"**To unlock full AI analysis:**\n"
|
| 144 |
+
"- Enter your OpenAI or Anthropic API key below, OR\n"
|
| 145 |
+
"- Configure secrets in HuggingFace Space settings\n\n"
|
| 146 |
+
"---\n\n"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
# Run the agent and stream events
|
| 150 |
response_parts: list[str] = []
|
| 151 |
|
| 152 |
try:
|
| 153 |
+
orchestrator = configure_orchestrator(
|
| 154 |
+
use_mock=use_mock,
|
| 155 |
+
mode=mode,
|
| 156 |
+
user_api_key=user_api_key,
|
| 157 |
+
api_provider=api_provider,
|
| 158 |
+
)
|
| 159 |
async for event in orchestrator.run(message):
|
| 160 |
# Format event as markdown
|
| 161 |
event_md = event.to_markdown()
|
|
|
|
| 200 |
fn=research_agent,
|
| 201 |
title="",
|
| 202 |
examples=[
|
| 203 |
+
[
|
| 204 |
+
"What drugs could be repurposed for Alzheimer's disease?",
|
| 205 |
+
"simple",
|
| 206 |
+
"",
|
| 207 |
+
"openai",
|
| 208 |
+
],
|
| 209 |
+
[
|
| 210 |
+
"Is metformin effective for treating cancer?",
|
| 211 |
+
"simple",
|
| 212 |
+
"",
|
| 213 |
+
"openai",
|
| 214 |
+
],
|
| 215 |
+
[
|
| 216 |
+
"What medications show promise for Long COVID treatment?",
|
| 217 |
+
"simple",
|
| 218 |
+
"",
|
| 219 |
+
"openai",
|
| 220 |
+
],
|
| 221 |
+
[
|
| 222 |
+
"Can statins be repurposed for neurological conditions?",
|
| 223 |
+
"simple",
|
| 224 |
+
"",
|
| 225 |
+
"openai",
|
| 226 |
+
],
|
| 227 |
],
|
| 228 |
additional_inputs=[
|
| 229 |
gr.Radio(
|
|
|
|
| 231 |
value="simple",
|
| 232 |
label="Orchestrator Mode",
|
| 233 |
info="Simple: Linear (OpenAI/Anthropic) | Magentic: Multi-Agent (OpenAI)",
|
| 234 |
+
),
|
| 235 |
+
gr.Textbox(
|
| 236 |
+
label="π API Key (Optional - Bring Your Own Key)",
|
| 237 |
+
placeholder="sk-... or sk-ant-...",
|
| 238 |
+
type="password",
|
| 239 |
+
info="Enter your own API key for full AI analysis. Never stored.",
|
| 240 |
+
),
|
| 241 |
+
gr.Radio(
|
| 242 |
+
choices=["openai", "anthropic"],
|
| 243 |
+
value="openai",
|
| 244 |
+
label="API Provider",
|
| 245 |
+
info="Select the provider for your API key",
|
| 246 |
+
),
|
| 247 |
],
|
| 248 |
)
|
| 249 |
|
tests/unit/agent_factory/test_judges.py
CHANGED
|
@@ -164,8 +164,9 @@ class TestMockJudgeHandler:
|
|
| 164 |
|
| 165 |
result = await handler.assess("test", evidence)
|
| 166 |
|
| 167 |
-
expected_mech_score = 7
|
| 168 |
expected_evidence_len = 2
|
|
|
|
|
|
|
| 169 |
|
| 170 |
assert handler.call_count == 1
|
| 171 |
assert handler.last_question == "test"
|
|
@@ -174,6 +175,8 @@ class TestMockJudgeHandler:
|
|
| 174 |
assert result.details.mechanism_score == expected_mech_score
|
| 175 |
assert result.sufficient is False
|
| 176 |
assert result.recommendation == "continue"
|
|
|
|
|
|
|
| 177 |
|
| 178 |
@pytest.mark.asyncio
|
| 179 |
async def test_mock_handler_custom_response(self):
|
|
|
|
| 164 |
|
| 165 |
result = await handler.assess("test", evidence)
|
| 166 |
|
|
|
|
| 167 |
expected_evidence_len = 2
|
| 168 |
+
# New dynamic scoring: mechanism_score = min(10, evidence_count * 2)
|
| 169 |
+
expected_mech_score = min(10, expected_evidence_len * 2) # = 4
|
| 170 |
|
| 171 |
assert handler.call_count == 1
|
| 172 |
assert handler.last_question == "test"
|
|
|
|
| 175 |
assert result.details.mechanism_score == expected_mech_score
|
| 176 |
assert result.sufficient is False
|
| 177 |
assert result.recommendation == "continue"
|
| 178 |
+
# Verify demo mode messaging
|
| 179 |
+
assert "Demo mode" in result.reasoning
|
| 180 |
|
| 181 |
@pytest.mark.asyncio
|
| 182 |
async def test_mock_handler_custom_response(self):
|
tests/unit/tools/test_clinicaltrials.py
CHANGED
|
@@ -123,11 +123,24 @@ class TestClinicalTrialsTool:
|
|
| 123 |
await tool.search("metformin alzheimer")
|
| 124 |
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
class TestClinicalTrialsIntegration:
|
| 127 |
"""Integration tests (marked for separate run)."""
|
| 128 |
|
| 129 |
@pytest.mark.integration
|
| 130 |
@pytest.mark.asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
async def test_real_api_call(self) -> None:
|
| 132 |
"""Test actual API call (requires network)."""
|
| 133 |
tool = ClinicalTrialsTool()
|
|
|
|
| 123 |
await tool.search("metformin alzheimer")
|
| 124 |
|
| 125 |
|
| 126 |
+
def _can_reach_clinicaltrials() -> bool:
|
| 127 |
+
"""Check if ClinicalTrials.gov API is reachable."""
|
| 128 |
+
try:
|
| 129 |
+
resp = requests.get("https://clinicaltrials.gov/api/v2/studies", timeout=5)
|
| 130 |
+
return resp.status_code < 500
|
| 131 |
+
except (requests.RequestException, OSError):
|
| 132 |
+
return False
|
| 133 |
+
|
| 134 |
+
|
| 135 |
class TestClinicalTrialsIntegration:
|
| 136 |
"""Integration tests (marked for separate run)."""
|
| 137 |
|
| 138 |
@pytest.mark.integration
|
| 139 |
@pytest.mark.asyncio
|
| 140 |
+
@pytest.mark.skipif(
|
| 141 |
+
not _can_reach_clinicaltrials(),
|
| 142 |
+
reason="ClinicalTrials.gov API not reachable (network/SSL issue)",
|
| 143 |
+
)
|
| 144 |
async def test_real_api_call(self) -> None:
|
| 145 |
"""Test actual API call (requires network)."""
|
| 146 |
tool = ClinicalTrialsTool()
|