Dehmuller's picture
Update app.py
14d0315 verified
# app.py
import os
import time
import json
import re
import html
import urllib.parse
from collections import OrderedDict
import gradio as gr
import requests
from bs4 import BeautifulSoup
from langdetect import detect, DetectorFactory
DetectorFactory.seed = 0 # deterministic language detection
# Hugging Face transformers
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Optional OpenAI client (new-ish SDK)
try:
from openai import OpenAI, error as openai_error
except Exception:
OpenAI = None
openai_error = None
# Optional datasets for Tatoeba examples
try:
from datasets import load_dataset
except Exception:
load_dataset = None
# ---------- Config ----------
MODEL_NAME = "Helsinki-NLP/opus-mt-en-pt" # literal MT
MAX_FREE_CANDIDATES = 8
TATOEBA_CONFIG = ("Helsinki-NLP/tatoeba_mt", "eng-por") # dataset id + config
HEADERS = {
"User-Agent": "Mozilla/5.0 (compatible; translator-bot/1.0; +https://example.com/bot)"
}
REQUEST_TIMEOUT = 8 # seconds
SLEEP_BETWEEN_REQUESTS = 0.5 # polite pacing for scrapers
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
openai_client = None
if OPENAI_KEY and OpenAI is not None:
try:
openai_client = OpenAI(api_key=OPENAI_KEY)
except Exception:
openai_client = None
# Load HF model/tokenizer (literal MT)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
# ---------- Utilities ----------
def safe_request(url):
"""GET page with basic error handling and headers."""
try:
r = requests.get(url, headers=HEADERS, timeout=REQUEST_TIMEOUT)
time.sleep(SLEEP_BETWEEN_REQUESTS)
if r.status_code == 200:
return r.text
return None
except Exception:
return None
def normalize_text(s):
if not s:
return ""
s = re.sub(r"\s+", " ", s).strip()
return s
def is_probably_portuguese(text):
"""Detect Portuguese robustly (langdetect + heuristic)."""
if not text or len(text.strip()) < 2:
return False
try:
lang = detect(text)
if lang == "pt":
return True
except Exception:
pass
# fallback heuristic: presence of Portuguese diacritics or common PT glue-words
pt_markers = ["ão", "â", "ê", "ô", "é", "à", "í", "õ", "ç", " que ", " para ", " com "]
low = text.lower()
return any(m in low for m in pt_markers)
def dedupe_preserve_order(items):
seen = set()
out = []
for item in items:
key = normalize_text(item).lower()
if key and key not in seen:
seen.add(key)
out.append(item)
return out
# ---------- MT (literal) ----------
def literal_mt(text):
"""Return a short literal PT translation from HF model."""
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs, max_length=120)
out = tokenizer.decode(outputs[0], skip_special_tokens=True)
return normalize_text(out)
except Exception as e:
return None
# ---------- Tatoeba examples (corpus-backed idioms) ----------
_tatoeba_cache = None
def load_tatoeba_dataset():
global _tatoeba_cache
if _tatoeba_cache is not None:
return _tatoeba_cache
if load_dataset is None:
_tatoeba_cache = None
return None
try:
ds = load_dataset(*TATOEBA_CONFIG, split="train") # may take time first run
_tatoeba_cache = ds
return ds
except Exception:
_tatoeba_cache = None
return None
def find_tatoeba_candidates(phrase, max_results=3):
"""Search the loaded Tatoeba ENG->POR pairs for examples containing the phrase (best-effort)."""
ds = load_tatoeba_dataset()
if ds is None:
return []
# safe lowercase match on English side
phrase_lc = phrase.lower()
results = []
try:
# streaming filter to avoid loading whole dataset in memory for large datasets
for doc in ds:
en = doc.get("translation", {}).get("en") or doc.get("en") or ""
pt = doc.get("translation", {}).get("pt") or doc.get("pt") or ""
if not en or not pt:
continue
if phrase_lc in en.lower():
# prefer shorter pt strings (phrases) sometimes
example = normalize_text(pt)
if example and is_probably_portuguese(example):
results.append({"pt": example, "en": normalize_text(en)})
if len(results) >= max_results:
break
except Exception:
pass
return results[:max_results]
# ---------- Linguee scraper ----------
def linguee_search(phrase, max_results=4):
"""Scrape Linguee search page for phrase candidates (best-effort)."""
url = "https://www.linguee.com/english-portuguese/search?source=english&query=" + urllib.parse.quote(phrase)
html_text = safe_request(url)
candidates = []
if not html_text:
return candidates
soup = BeautifulSoup(html_text, "html.parser")
# Common Linguee link class
for a in soup.select("a.dictLink"):
txt = normalize_text(a.get_text())
if txt and is_probably_portuguese(txt):
candidates.append({"pt": txt, "source_url": url})
# fallback: look for translations in spans
if not candidates:
# Try more generic selectors
for tag in soup.find_all(["a", "span", "div"]):
txt = normalize_text(tag.get_text())
if txt and len(txt.split()) <= 6 and is_probably_portuguese(txt):
candidates.append({"pt": txt, "source_url": url})
# dedupe and limit
seen = []
out = []
for c in candidates:
key = c["pt"].lower()
if key not in seen:
seen.append(key)
out.append(c)
if len(out) >= max_results:
break
return out
# ---------- Reverso Context scraper ----------
def reverso_search(phrase, max_results=4):
"""Scrape Reverso Context for translation candidates (best-effort)."""
# Reverso uses hyphenated path sometimes; use safe URL encoding
url = "https://context.reverso.net/translation/english-portuguese/" + urllib.parse.quote(phrase)
html_text = safe_request(url)
candidates = []
if not html_text:
return candidates
soup = BeautifulSoup(html_text, "html.parser")
# Reverso often shows translations in elements with class containing 'translation'
for el in soup.select(".translation, .display, .translations, .translation .text"):
txt = normalize_text(el.get_text())
if txt and is_probably_portuguese(txt):
candidates.append({"pt": txt, "source_url": url})
# fallback: pick anchors with possible translations
if not candidates:
for a in soup.find_all("a"):
txt = normalize_text(a.get_text())
if txt and len(txt.split()) <= 6 and is_probably_portuguese(txt):
candidates.append({"pt": txt, "source_url": url})
# dedupe & limit
out = []
seen = set()
for c in candidates:
key = c["pt"].lower()
if key not in seen:
seen.add(key)
out.append(c)
if len(out) >= max_results:
break
return out
# ---------- Glosbe scraper ----------
def glosbe_search(phrase, max_results=4):
"""Scrape Glosbe page for EN->PT matches (best-effort)."""
url = "https://glosbe.com/en/pt/" + urllib.parse.quote(phrase)
html_text = safe_request(url)
candidates = []
if not html_text:
return candidates
soup = BeautifulSoup(html_text, "html.parser")
# Glosbe often lists translations in elements with class 'translation' or table rows
for el in soup.select(".translation, .meaning, .wrap"):
txt = normalize_text(el.get_text())
if txt and is_probably_portuguese(txt):
candidates.append({"pt": txt, "source_url": url})
# fallback: anchors
if not candidates:
for a in soup.find_all("a"):
txt = normalize_text(a.get_text())
if txt and len(txt.split()) <= 6 and is_probably_portuguese(txt):
candidates.append({"pt": txt, "source_url": url})
out = []
seen = set()
for c in candidates:
key = c["pt"].lower()
if key not in seen:
seen.add(key)
out.append(c)
if len(out) >= max_results:
break
return out
# ---------- Sinonimos (to expand) ----------
def sinonimos_search(pt_phrase, max_results=4):
url = "https://www.sinonimos.com.br/" + urllib.parse.quote(pt_phrase.replace(" ", "-"))
html_text = safe_request(url)
if not html_text:
return []
soup = BeautifulSoup(html_text, "html.parser")
syns = []
# site uses anchors with class "sinonimo"
for a in soup.select("a.sinonimo"):
txt = normalize_text(a.get_text())
if txt and is_probably_portuguese(txt):
syns.append(txt)
if len(syns) >= max_results:
break
# fallback generic anchor text
if not syns:
for a in soup.find_all("a"):
txt = normalize_text(a.get_text())
if txt and is_probably_portuguese(txt) and len(txt.split()) <= 4:
syns.append(txt)
if len(syns) >= max_results:
break
return dedupe_preserve_order(syns)[:max_results]
# ---------- Merge, classify, rank ----------
def classify_candidate(pt_text, literal_text):
"""Return type label: 'literal' if same as literal, else 'idiomatic' or 'paraphrase'."""
if not pt_text:
return "unknown"
if normalize_text(pt_text).lower() == normalize_text(literal_text).lower():
return "literal"
# if candidate is short and contains common idiom markers or differs a lot => idiomatic
if len(pt_text.split()) <= 3:
return "idiomatic"
# else paraphrase
return "paraphrase"
def rank_candidates(candidates):
"""
candidates: list of dicts with keys 'pt', 'sources' (list), 'example' (optional)
Ranking heuristic (best-effort):
- prefer items that appear in multiple sources
- prefer Tatoeba examples (corpus-backed)
- otherwise keep source-priority order
"""
# count source hits
for c in candidates:
c_sources = set(c.get("sources", []))
c["score"] = len(c_sources)
# small boost if Tatoeba example exists
if c.get("example"):
c["score"] += 1.5
# sort by score desc, then shorter phrase first
candidates_sorted = sorted(candidates, key=lambda x: (-x["score"], len(x.get("pt","").split())))
return candidates_sorted
# ---------- GPT (hybrid) ----------
def gpt_analyze(phrase):
"""Ask GPT to provide literal, idioms, explanation; returns structured dict or None on failure."""
if openai_client is None:
return None
prompt = (
f"You are a bilingual English → Brazilian Portuguese translation assistant.\n\n"
f"For the English expression: \"{phrase}\"\n\n"
"Return a JSON object with these keys:\n"
" - literal: a short literal word-for-word PT translation (string)\n"
" - idioms: an array of 2-4 idiomatic or natural Brazilian Portuguese equivalents (strings)\n"
" - paraphrases: an array of 1-3 short paraphrases in PT that convey the meaning\n"
" - explanation: a short explanation in Portuguese and/or English of the meaning and nuance\n\n"
"Only output the JSON (no extra commentary). Keep strings short. If no idiom exists, return plausible paraphrases.\n"
)
try:
# new-ish client API: chat completions
resp = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
max_tokens=500,
)
txt = resp.choices[0].message.content
# The model should return JSON — try to locate first {...} block
first_brace = txt.find("{")
last_brace = txt.rfind("}")
if first_brace >= 0 and last_brace > first_brace:
json_text = txt[first_brace:last_brace+1]
data = json.loads(json_text)
return data
# fallback: try direct load
return json.loads(txt)
except Exception:
return None
# ---------- Main orchestration ----------
def build_free_stack_candidates(expr):
"""Gather candidates from Tatoeba + Linguee + Reverso + Glosbe + Sinonimos, return structured list."""
literal = literal_mt(expr) or ""
candidates = []
# 1) Tatoeba examples (parallel corpus)
tatoeba_hits = find_tatoeba_candidates(expr, max_results=4)
for hit in tatoeba_hits:
pt = hit.get("pt")
example_en = hit.get("en")
candidates.append({
"pt": pt,
"sources": ["Tatoeba"],
"example": {"pt": pt, "en": example_en}
})
# 2) Linguee
ling_hits = linguee_search(expr, max_results=4)
for h in ling_hits:
candidates.append({"pt": normalize_text(h["pt"]), "sources": ["Linguee"], "source_url": h.get("source_url")})
# 3) Reverso
rev_hits = reverso_search(expr, max_results=3)
for h in rev_hits:
candidates.append({"pt": normalize_text(h["pt"]), "sources": ["Reverso"], "source_url": h.get("source_url")})
# 4) Glosbe
glos_hits = glosbe_search(expr, max_results=3)
for h in glos_hits:
candidates.append({"pt": normalize_text(h["pt"]), "sources": ["Glosbe"], "source_url": h.get("source_url")})
# 5) Expand using Sinonimos for the top candidate (if exists)
if candidates:
top_pt = normalize_text(candidates[0]["pt"])
syns = sinonimos_search(top_pt, max_results=4)
for s in syns:
candidates.append({"pt": s, "sources": ["Sinonimos"], "source_url": f"https://www.sinonimos.com.br/{urllib.parse.quote(top_pt)}"})
# dedupe by pt text (preserve order)
seen = set()
unique = []
for c in candidates:
key = normalize_text(c.get("pt", "")).lower()
if key and key not in seen:
seen.add(key)
unique.append(c)
# classify and fill missing info
for c in unique:
c["type"] = classify_candidate(c.get("pt", ""), literal)
if "sources" not in c:
c["sources"] = ["unknown"]
# ranking
ranked = rank_candidates(unique)
return literal, ranked
def build_response(expr):
expr = expr.strip()
if not expr:
return {"status": "error", "message": "Empty input."}
# Try GPT hybrid first
gpt_result = None
if openai_client:
try:
gpt_result = gpt_analyze(expr)
except Exception:
gpt_result = None
if gpt_result:
# Build structured response from GPT
status = "✅ Hybrid Mode: GPT-4o-mini + HF literal MT"
literal_mt_text = literal_mt(expr) or ""
options = []
# literal from GPT if provided, else MT
literal_from_gpt = gpt_result.get("literal") if isinstance(gpt_result, dict) else None
literal_text = normalize_text(literal_from_gpt) if literal_from_gpt else literal_mt_text
options.append({
"translation": s,
"type": "idiomatic" if len(s.split()) <= 3 else "paraphrase",
"sources": ["Sinonimos"],
"example": None,
"confidence": 95,
"rationale": "Literal translation from GPT (backed by HF literal MT)."
})
# idioms
idioms = gpt_result.get("idioms") or []
for idi in idioms[:4]:
idi_norm = normalize_text(idi)
options.append({
"translation": idi_norm,
"type": "idiomatic",
"sources": ["GPT"],
"example": None,
"confidence": 90,
"rationale": "GPT suggested idiomatic equivalent."
})
# paraphrases
for para in (gpt_result.get("paraphrases") or [])[:2]:
para_norm = normalize_text(para)
options.append({
"translation": para_norm,
"type": "paraphrase",
"sources": ["GPT"],
"example": None,
"confidence": 85,
"rationale": "GPT paraphrase to capture meaning."
})