Upload Reranker and Embedding Model
Browse files- Reranker/RerankerModel.py +12 -0
- Reranker/__init__.py +1 -0
- embedder/EmbeddingModels.py +76 -0
- embedder/__init__.py +1 -0
Reranker/RerankerModel.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import CrossEncoder
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class Reranker:
|
| 5 |
+
def __init__(self, model_name="cross-encoder/ms-marco-MiniLM-L-6-v2"):
|
| 6 |
+
self.model = CrossEncoder(model_name)
|
| 7 |
+
|
| 8 |
+
def rerank_results(self, query: str, results: list[dict], top_n: int = 5) -> list[dict]:
|
| 9 |
+
pairs = [(query, r["text"]) for r in results if r.get("text")]
|
| 10 |
+
scores = self.model.predict(pairs)
|
| 11 |
+
scored_results = sorted(zip(scores, results), key=lambda x: x[0], reverse=True)
|
| 12 |
+
return [r for _, r in scored_results[:top_n]]
|
Reranker/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .RerankerModel import Reranker
|
embedder/EmbeddingModels.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
| 2 |
+
import numpy as np
|
| 3 |
+
import requests
|
| 4 |
+
|
| 5 |
+
class EmbeddingModel:
|
| 6 |
+
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L12-v2"):
|
| 7 |
+
|
| 8 |
+
self.model = model_name
|
| 9 |
+
|
| 10 |
+
def get_embedder(self):
|
| 11 |
+
return SentenceTransformer(self.model)
|
| 12 |
+
|
| 13 |
+
# Remote (insert & search)
|
| 14 |
+
def _embed_texts(self, texts: list[str]) -> np.ndarray:
|
| 15 |
+
model = self.get_embedder()
|
| 16 |
+
embs = model.encode(
|
| 17 |
+
texts, batch_size=64, show_progress_bar=False,
|
| 18 |
+
convert_to_numpy=True, normalize_embeddings=True
|
| 19 |
+
)
|
| 20 |
+
# Ensure float32
|
| 21 |
+
return embs.astype("float32")
|
| 22 |
+
|
| 23 |
+
def search_remote(self, query: str, k: int = 5, HOST: str="") -> list[dict]:
|
| 24 |
+
"""
|
| 25 |
+
Embeds the query and searches the remote vector store.
|
| 26 |
+
Returns a list of result dicts. We expect each item to include at least:
|
| 27 |
+
- score (float)
|
| 28 |
+
- payload (dict) with 'text' and optional metadata
|
| 29 |
+
"""
|
| 30 |
+
q = self._embed_texts([query])[0].tolist()
|
| 31 |
+
try:
|
| 32 |
+
resp = requests.post(
|
| 33 |
+
f"{HOST}/search",
|
| 34 |
+
json={"vector": q, "k": k},
|
| 35 |
+
headers={"Content-Type": "application/json"},
|
| 36 |
+
timeout=30
|
| 37 |
+
)
|
| 38 |
+
resp.raise_for_status()
|
| 39 |
+
data = resp.json()
|
| 40 |
+
# print("Raw remote search response:", data)
|
| 41 |
+
# print(f"Row Data: {data}")
|
| 42 |
+
# Each result ideally has {'scores': ..., 'payloads': {...}}.
|
| 43 |
+
payload = data.get("payloads")
|
| 44 |
+
scores = data.get("scores")
|
| 45 |
+
dict = {"scores": scores, "payloads": payload}
|
| 46 |
+
return dict
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Remote search failed: {e}")
|
| 50 |
+
return []
|
| 51 |
+
|
| 52 |
+
def retrieve_top_k_remote_texts(self, query: str, k: int = 5, HOST: str="") -> list[str]:
|
| 53 |
+
"""
|
| 54 |
+
Uses search_remote() and extracts 'text' from payloads.
|
| 55 |
+
"""
|
| 56 |
+
results = self.search_remote(query, k=k, HOST=HOST)
|
| 57 |
+
# print(f"Remote search returned {len(results)} results.")
|
| 58 |
+
# print("res-1:", results)
|
| 59 |
+
texts = []
|
| 60 |
+
sources = []
|
| 61 |
+
# print(results)
|
| 62 |
+
for r in results.get("payloads"):
|
| 63 |
+
t = r.get("text")
|
| 64 |
+
src = r.get("source")
|
| 65 |
+
if isinstance(t, str) and len(t.strip()) > 0:
|
| 66 |
+
texts.append(t.strip())
|
| 67 |
+
if isinstance(src, str) and src:
|
| 68 |
+
sources.append(src)
|
| 69 |
+
# print(f"Retrieved {len(texts)} remote texts for query.")
|
| 70 |
+
# print("Sources:", {len(sources)})
|
| 71 |
+
results = []
|
| 72 |
+
for i in range(len(sources)):
|
| 73 |
+
results.append({"text": texts[i], "source": sources[i]})
|
| 74 |
+
# print("Results-2:", results)
|
| 75 |
+
return results
|
| 76 |
+
|
embedder/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .EmbeddingModels import EmbeddingModel
|