Spaces:
Runtime error
Runtime error
| import os | |
| import requests | |
| import streamlit as st | |
| from langchain.callbacks.base import BaseCallbackHandler | |
| def upload_data(uploaded_files, BASE_URL): | |
| files = {"file": uploaded_files} | |
| with st.spinner("Uploading PDF..."): | |
| response = requests.post( | |
| f"{BASE_URL}/api/upload", files=files | |
| ) | |
| if response.status_code == 200: | |
| st.success( | |
| f'{response.json()["message"][0]} Vector Store created successfully!' | |
| ) | |
| st.session_state.uploaded_pdf = True | |
| else: | |
| st.error("Failed to upload PDF!") | |
| class StreamHandler(BaseCallbackHandler): | |
| def __init__( | |
| self, container: st.delta_generator.DeltaGenerator, initial_text: str = "" | |
| ): | |
| self.container = container | |
| self.text = initial_text | |
| self.run_id_ignore_token = None | |
| def on_llm_start(self, serialized: dict, prompts: list, **kwargs): | |
| # Workaround to prevent showing the rephrased question as output | |
| if prompts[0].startswith("Human"): | |
| self.run_id_ignore_token = kwargs.get("run_id") | |
| def on_llm_new_token(self, token: str, **kwargs) -> None: | |
| if self.run_id_ignore_token == kwargs.get("run_id", False): | |
| return | |
| self.text += token | |
| self.container.markdown(self.text) | |
| class PrintRetrievalHandler(BaseCallbackHandler): | |
| def __init__(self, container): | |
| self.status = container.status("**Context Retrieval**") | |
| def on_retriever_start(self, serialized: dict, query: str, **kwargs): | |
| self.status.write(f"**Question:** {query}") | |
| self.status.update(label=f"**Context Retrieval:** {query}") | |
| def on_retriever_end(self, documents, **kwargs): | |
| for idx, doc in enumerate(documents): | |
| source = os.path.basename(doc.metadata["source"]) | |
| self.status.write(f"**Document {idx} from {source}**") | |
| self.status.markdown(doc.page_content) | |
| self.status.update(state="complete") | |