Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,529 Bytes
5000b0a 7d8772d 5000b0a 497e461 5000b0a 497e461 5000b0a b3980c8 d759e44 5000b0a b3980c8 5000b0a 3104e14 b3980c8 5000b0a b3980c8 5000b0a 6535ded 8b1006a 6535ded 5000b0a 497e461 5000b0a 497e461 5000b0a 497e461 5000b0a 6f53b1b 5000b0a ad2fde6 5000b0a eea070b 5000b0a 7896d24 8b1006a 5000b0a eea070b 5000b0a 7896d24 5000b0a eea070b 5000b0a eea070b 5000b0a 91a2d3c 5000b0a eea070b 5000b0a 6f53b1b 5000b0a 6f53b1b 5000b0a 13a5cf7 5000b0a 8b1006a 5000b0a 91a2d3c a0da0d6 5000b0a a0da0d6 5000b0a b3980c8 5000b0a 8b1006a 5000b0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 |
import os, sys, shutil
import csv
import numpy as np
import ffmpeg
import cv2
import collections
import json
import math
import time
import imageio
import random
import ast
import spaces
import gradio as gr
from omegaconf import OmegaConf
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from diffusers import AutoencoderKLCogVideoX
from transformers import T5EncoderModel
from diffusers.utils import export_to_video, load_image
# Import files from the local fodler
root_path = os.path.abspath('.')
sys.path.append(root_path)
from pipelines.pipeline_cogvideox_i2v_motion_FrameINO import CogVideoXImageToVideoPipeline
from architecture.cogvideox_transformer_3d import CogVideoXTransformer3DModel
from data_loader.video_dataset_motion import VideoDataset_Motion
from architecture.transformer_wan import WanTransformer3DModel
from pipelines.pipeline_wan_i2v_motion_FrameINO import WanImageToVideoPipeline
from architecture.autoencoder_kl_wan import AutoencoderKLWan
MARKDOWN = \
"""
<div align='center'>
<h1> Frame In-N-Out </h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin-bottom: 1rem;'>\
<a href='https://kiteretsu77.github.io/BoyangWang/'>Boyang Wang</a>, <a href='https://xuweiyichen.github.io/'>Xuweiyi Chen</a>, <a href='http://mgadelha.me/'>Matheus Gadelha</a>, <a href='https://sites.google.com/site/zezhoucheng/'>Zezhou Cheng</a>\
</h2> \
<div style="display: flex; flex-wrap: wrap; justify-content: center; gap: 2rem; margin-bottom: 1rem;">
<a href="https://arxiv.org/abs/2505.21491" target="_blank"
style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; /* 浅灰色背景 */ color: #333; /* 深色文字 */ text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
<span style="margin-right: 0.5rem;">📄</span>
<span>Paper</span>
</a>
<a href="https://github.com/UVA-Computer-Vision-Lab/FrameINO" target="_blank"
style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
<span style="margin-right: 0.5rem;">💻</span>
<span>GitHub</span>
</a>
<a href="https://uva-computer-vision-lab.github.io/Frame-In-N-Out" target="_blank"
style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
<span style="margin-right: 0.5rem;">🤖</span>
<span>Project Page</span>
</a>
<a href="https://huggingface.co/collections/uva-cv-lab/frame-in-n-out" target="_blank"
style="display: inline-flex; align-items: center; padding: 0.5rem 1rem; background-color: #f0f0f0; color: #333; text-decoration: none; border-radius: 9999px; font-weight: 500; transition: background-color 0.3s;">
<span style="margin-right: 0.5rem;">🤗</span>
<span>HF Model and Data</span>
</a>
</div>
</div>
Frame In-N-Out expands the first-frame to a larger canvas, where it allows users to assign motion trajectories to existing objects and introduce new identities that enter the scene with specified trajectories.<br>
The model we used here is [<b>Wan2.2-5B</b> V1.6](https://huggingface.co/uva-cv-lab/FrameINO_Wan2.2_5B_Stage2_MotionINO_v1.6) trained on our Frame In-N-Out control mechanism.
<p style="color: red;">
<b>Easiest way:</b> Choose one from <b>Examples</b> below and then simply click <b>Generate</b>.
</p>
❗️❗️❗️Instruction Steps:
<br>
1️⃣ Upload your <b>Input Image 🖼️ </b>.
Next, set <b>Resized Height for Input Image</b> and <b>Resized Width for Input Image</b> for the size you want.
<br>
2️⃣ Set <b>Top-Left Expand Height</b>, <b>Top-Left Expand Width</b>, <b>Bottom-Right Expand Height</b>, and <b>Bottom-Right Expand Width</b> for the expansion amount.
<br> The Canvas Height (Resized Height + Top-Left Expand Height + Bottom-Right Expand Height) and Canvas Width (Resized Width + Top-Left Expand Width + Bottom-Right Expand Width) should be the multiplier of 32.
<br> Recommend <b>Canvas Height = 704</b> and <b>Canvas Width = 1280</b> for the best performance (pre-trained model default resolution).
<br>
3️⃣ Click <b>Build the Canvas</b>.
4️⃣ Provide the motion trajectory of the object by clicking on the <b>Expanded Canvas 🖼️ </b>.
You can make additional trajectory for the same object by clicking <b>Add New Traj Line (Same Obj)</b>.
Reset by <b>Clear All Traj</b>.
<br>
5️⃣ Provide the <b>Identity Reference</b> image and its trajectory (optional).
Since image is segmented by SAM first (providng center point as query), it will be nice for the inputs to be center cropped.
<br> New instance trajectory can be done by clicking <b>Add New Instance (New Obj, including new ID)</b>.
<br>
6️⃣ Write a detailed <b>text prompt</b>.
<br>
7️⃣ Click the <b>Generate!</b> button to start the Video Generation.
<br>
If **Frame In-N-Out** is helpful, please help star the [GitHub Repo](https://github.com/UVA-Computer-Vision-Lab/FrameINO?tab=readme-ov-file). Thanks!
"""
# Color
all_color_codes = [(255, 0, 0), (255, 255, 0), (0, 255, 0), (0, 255, 255),
(255, 0, 255), (0, 0, 255), (128, 128, 128), (64, 224, 208),
(233, 150, 122)]
for _ in range(100): # Should not be over 100 colors
all_color_codes.append((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)))
# Data Transforms
train_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0),
]
)
# Download to avoid uneasy git lfs install
if not os.path.exists("__assets__"): # Check if the assets images exists; if not, download and unzip one
os.system("wget -q https://github.com/user-attachments/files/23571020/assets.zip")
os.system("unzip assets.zip")
######################################################## Wan2.2 5B #################################################################
# Path Setting
model_code_name = "Wan"
base_model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
transformer_ckpt_path = "uva-cv-lab/FrameINO_Wan2.2_5B_Stage2_MotionINO_v1.6"
# Load Model
print("Loading the model!")
transformer = WanTransformer3DModel.from_pretrained(transformer_ckpt_path, torch_dtype=torch.float16)
vae = AutoencoderKLWan.from_pretrained(base_model_id, subfolder="vae", torch_dtype=torch.float32)
# Create the Pipeline
print("Loading the pipeline!")
pipe = WanImageToVideoPipeline.from_pretrained(base_model_id, transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
# pipe.enable_model_cpu_offload()
#####################################################################################################################################
########################################################## Other Auxiliary Func #################################################################
# # Init SAM model
model_type = "vit_h" #vit-h has the most number of paramter
sam_pretrained_path = "pretrained/sam_vit_h_4b8939.pth"
if not os.path.exists(sam_pretrained_path):
os.system("wget -q https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -P pretrained/")
sam = sam_model_registry[model_type](checkpoint = sam_pretrained_path).to(device="cuda")
sam_predictor = SamPredictor(sam) # There is a lot of setting here
#####################################################################################################################################
# Examples Sample
def get_example():
case = [
[
'__assets__/horse.jpg',
480,
736,
128,
224,
96,
320,
'__assets__/sheep.png',
"A brown horse with a black mane walks to the right on a wooden path in a green forest, and then a white sheep enters from the left and walks toward it. Natural daylight, realistic texture, smooth motion, cinematic focus, 4K detail.",
[[[[299, 241], [390, 236], [461, 245], [521, 249], [565, 240], [612, 246], [666, 245]], [[449, 224], [488, 212], [512, 206], [531, 209], [552, 202], [581, 204], [609, 210], [657, 206], [703, 202], [716, 211]]], [[[24, 305], [104, 300], [167, 299], [219, 303], [270, 296], [295, 304]]]],
],
[
'__assets__/cup.jpg',
448,
736,
256,
64,
0,
480,
'__assets__/hand2.png',
"A human hand reaches into the frame, gently grabbing the black metal cup with a golden character design on the front, lifting it off the table and taking it away.",
[[[[565, 324], [473, 337], [386, 345], [346, 340], [339, 324], [352, 212], [328, 114], [328, 18], [348, 0]]]],
],
[
'__assets__/grass.jpg',
512,
800,
64,
64,
160,
416,
'__assets__/dog.png',
"A fluffy, adorable puppy joyfully sprints onto the bright green grass, its fur bouncing with each step as sunlight highlights its soft coat. The scene takes place in a peaceful park filled with tall trees casting gentle shadows across the lawn. After dashing forward with enthusiasm, the puppy slows to a happy trot, continuing farther ahead into the deeper area of the park, disappearing toward the more shaded grass beneath the trees.",
[[[[600, 412], [512, 394], [408, 358], [333, 336], [270, 313], [259, 260], [236, 222], [231, 180]], [[592, 392], [295, 305], [256, 217], [243, 163]]]],
],
[
'__assets__/man_scene.jpg',
576,
1024,
64,
32,
64,
224,
None,
"A single hiker, equipped with a backpack, walks toward the right side of a rugged mountainside trail. The bright sunlight highlights the pale rocky terrain around him, while massive stone cliffs loom in the background. Sparse patches of grass and scattered boulders sit along the path, emphasizing the isolation and vastness of the mountain environment as he steadily continues his journey.",
[[[[342, 247], [415, 247], [478, 262], [518, 271], [570, 275], [613, 283], [646, 308], [690, 307], [705, 325]], [[349, 227], [461, 232], [536, 254], [595, 252], [638, 269], [691, 289], [715, 291]], [[341, 283], [415, 291], [500, 316], [590, 317], [632, 354], [675, 362], [711, 372]]]],
]
]
return case
def on_example_click(
input_image, resized_height, resized_width,
top_left_height, top_left_width, bottom_right_height, bottom_right_width,
identity_image, text_prompt, traj_lists,
):
# Convert
traj_lists = ast.literal_eval(traj_lists)
# Note: No need for the rest like resized_width and resized_height, because these will be replaced in function
# Sequentially build the canvas (We don't accept the empty traj_lists & traj_instance_idx returned by build_canvas)
print("Build Canvas by Example!")
visual_canvas, initial_visual_canvas, inference_canvas, _, _ = build_canvas(input_image, resized_height, resized_width, top_left_height, top_left_width, bottom_right_height, bottom_right_width)
print("Init visual_canvas shape is", visual_canvas.shape)
print("Init inference_canvas shape is", inference_canvas.shape)
# Sequentially load the Trajs of all instances on the canvas
print("Build Traj by Example!")
visual_canvas, traj_instance_idx = fn_vis_all_instance_traj(visual_canvas, traj_lists)
print("Drawn visual_canvas shape is", visual_canvas.shape)
return visual_canvas, initial_visual_canvas, inference_canvas, traj_instance_idx
def build_canvas(input_image_path, resized_height, resized_width, top_left_height, top_left_width, bottom_right_height, bottom_right_width):
# Init
canvas_color = (250, 249, 246) # This color is like white color used in painting paper
# Convert the string to integer
if not resized_height.isdigit():
raise gr.Error("resized_height must be integer input!")
resized_height = int(resized_height)
if not resized_width.isdigit():
raise gr.Error("resized_width must be integer input!")
resized_width = int(resized_width)
if not top_left_height.isdigit():
raise gr.Error("top_left_height must be integer input!")
top_left_height = int(top_left_height)
if not top_left_width.isdigit():
raise gr.Error("top_left_width must be integer input!")
top_left_width = int(top_left_width)
if not bottom_right_height.isdigit():
raise gr.Error("bottom_right_height must be integer input!")
bottom_right_height = int(bottom_right_height)
if not bottom_right_width.isdigit():
raise gr.Error("bottom_right_width must be integer input!")
bottom_right_width = int(bottom_right_width)
# Read the original image and preprare the placeholder
first_frame_img = np.uint8(np.asarray(Image.open(input_image_path))) # NOTE: this is BGR form, be careful for the later cropping process for ID Reference
print("first_frame_img shape is ", first_frame_img.shape)
# Resize to a uniform resolution
first_frame_img = cv2.resize(first_frame_img, (resized_width, resized_height), interpolation = cv2.INTER_AREA)
print("first_frame_img is resized to", first_frame_img.shape)
# Expand to Outside Region to form the Canvas
expand_height = resized_height + top_left_height + bottom_right_height
expand_width = resized_width + top_left_width + bottom_right_width
inference_canvas = np.uint8(np.zeros((expand_height, expand_width, 3))) # Whole Black Canvas, same as other inference
visual_canvas = np.full((expand_height, expand_width, 3), canvas_color, dtype=np.uint8)
print("Init Visual Canvas shape is", visual_canvas.shape)
print("Init Inference Canvs shape is", inference_canvas.shape)
# Sanity Check
if expand_height % 32 != 0:
raise gr.Error("The Height of resized_height + top_left_height + bottom_right_height must be divisible by 32!")
if expand_width % 32 != 0:
raise gr.Error("The Width of resized_width + top_left_width + bottom_right_width must be divisible by 32!")
# Draw the Region Box Region (Original Resolution)
bottom_len = inference_canvas.shape[0] - bottom_right_height
right_len = inference_canvas.shape[1] - bottom_right_width
inference_canvas[top_left_height:bottom_len, top_left_width:right_len, :] = first_frame_img
visual_canvas[top_left_height:bottom_len, top_left_width:right_len, :] = first_frame_img
# Resize to the uniform height and width
visual_canvas = cv2.resize(visual_canvas, (uniform_width, uniform_height), interpolation = cv2.INTER_AREA)
print("Visual Canvas resized to", visual_canvas.shape)
# Return the visual_canvas (for visualizaiton) and canvas map
# Corresponds to: visual_canvas, initial_visual_canvas, inference_canvas, traj_instance_idx, traj_lists
return visual_canvas, visual_canvas.copy(), inference_canvas, 0, [ [ [] ] ] # The last two is initialized with the trajectory instance idx and trajectory list
def process_points(traj_list, num_frames=81):
if len(traj_list) < 2: # First point
return [traj_list[0]] * num_frames
elif len(traj_list) >= num_frames:
raise gr.Info("The number of trajectory points is more than the limits, we will do cropping!")
skip = len(traj_list) // num_frames
return traj_list[::skip][: num_frames - 1] + traj_list[-1:]
else:
insert_num = num_frames - len(traj_list)
insert_num_dict = {}
interval = len(traj_list) - 1
n = insert_num // interval
m = insert_num % interval
for i in range(interval):
insert_num_dict[i] = n
for i in range(m):
insert_num_dict[i] += 1
res = []
for i in range(interval):
insert_points = []
x0, y0 = traj_list[i]
x1, y1 = traj_list[i + 1]
delta_x = x1 - x0
delta_y = y1 - y0
for j in range(insert_num_dict[i]):
x = x0 + (j + 1) / (insert_num_dict[i] + 1) * delta_x
y = y0 + (j + 1) / (insert_num_dict[i] + 1) * delta_y
insert_points.append([int(x), int(y)])
res += traj_list[i : i + 1] + insert_points
res += traj_list[-1:]
# return
return res
def fn_vis_realtime_traj(visual_canvas, traj_list, traj_instance_idx): # Visualize the traj on canvas
# Process Points
points = process_points(traj_list)
# Draw straight line to connect
for i in range(len(points) - 1):
p = points[i]
p1 = points[i + 1]
cv2.line(visual_canvas, p, p1, all_color_codes[traj_instance_idx], 5)
return visual_canvas
def fn_vis_all_instance_traj(visual_canvas, traj_lists): # Visualize all traj from all instances on canvas
for traj_instance_idx, traj_list_instance in enumerate(traj_lists):
for traj_list_line in traj_list_instance:
visual_canvas = fn_vis_realtime_traj(visual_canvas, traj_list_line, traj_instance_idx)
return visual_canvas, traj_instance_idx # Also return the instance idx
def add_traj_point(
visual_canvas,
traj_lists,
traj_instance_idx,
evt: gr.SelectData,
): # Add new Traj and then visualize
# Convert
traj_lists = ast.literal_eval(traj_lists)
# Mark New Trajectory Key Point
hotizontal, vertical = evt.index
# traj_lists data structure is: (Num of Instnace, Num of Trajecotries, Num of Points, [X, Y])
traj_lists[-1][-1].append( [int(hotizontal), int(vertical)] )
# Draw new trajectory on the Canvas image
visual_canvas = fn_vis_realtime_traj(visual_canvas, traj_lists[-1][-1], traj_instance_idx)
# Return New Traj Marked Canvas image
return visual_canvas, traj_lists
def clear_traj_points(initial_visual_canvas):
return initial_visual_canvas.copy(), 0, [ [ [] ] ] # 1sr One is the initial state canvas; 2nd one is the traj instance idx; 3rd one is the traj list (with the same data structure)
def traj_point_update(traj_lists):
# Convert
traj_lists = ast.literal_eval(traj_lists)
# Append on the last trajecotry line
traj_lists[-1].append([])
return traj_lists
def traj_instance_update(traj_instance_idx, traj_lists):
# Convert
traj_lists = ast.literal_eval(traj_lists)
# Update one index
if traj_instance_idx >= len(all_color_codes):
raise gr.Error("The trajectory instance number is over the limit!")
# Add one for the traj instance
traj_instance_idx = traj_instance_idx + 1
# Append a new empty list to the traj lists
traj_lists.append([[]])
# Reutn
return traj_instance_idx, traj_lists
def sample_traj_by_length(points, num_samples):
# Sample points evenly from traj based on the euclidean distance
pts = np.array(points, dtype=float) # shape (M, 2)
# 1) 每段长度
seg = pts[1:] - pts[:-1]
seg_len = np.sqrt((seg**2).sum(axis=1)) # shape (M-1,)
# 2) 累积长度
cum = np.cumsum(seg_len)
total_length = cum[-1]
# 3) 目标等距长度位置
target = np.linspace(0, total_length, num_samples)
res = []
for t in target:
# 4) 找到它落在哪一段
idx = np.searchsorted(cum, t)
if idx == 0:
prev = 0.
else:
prev = cum[idx-1]
# 5) 在该段内插值
ratio = (t - prev) / seg_len[idx]
p = pts[idx] * ratio + pts[idx+1] * (1-ratio) # careful: direction reversed?
# Actually want: start*(1-ratio) + end*ratio
p = pts[idx] * (1 - ratio) + pts[idx+1] * ratio
res.append(p)
return np.array(res)
@spaces.GPU(duration=250)
def inference(inference_canvas, visual_canvas, text_prompt, traj_lists, main_reference_img,
resized_height, resized_width, top_left_height, top_left_width, bottom_right_height, bottom_right_width):
# TODO: enhance the text prompt by Qwen3-VL-32B?
print("Start Inference Pipeline!")
print("Check: inference_canvas shape is", inference_canvas.shape)
# Convert
resized_height = int(resized_height)
resized_width = int(resized_width)
top_left_height = int(top_left_height)
top_left_width = int(top_left_width)
bottom_right_height = int(bottom_right_height)
bottom_right_width = int(bottom_right_width)
traj_lists = ast.literal_eval(traj_lists)
# Init Some Fixed Setting
if model_code_name == "Wan":
config_path = "config/train_wan_motion_FrameINO.yaml"
dot_radius = 7
num_frames = 81
elif model_code_name == "CogVideoX":
config_path = "config/train_cogvideox_i2v_motion_FrameINO.yaml"
dot_radius = 6
num_frames = 49
config = OmegaConf.load(config_path)
# Prepare tmp folders
print()
store_folder_path = "tmp_app_example_" + str(int(time.time()))
if os.path.exists(store_folder_path):
shutil.rmtree(store_folder_path)
os.makedirs(store_folder_path)
# Write the visual canvas
visual_canvas_store_path = os.path.join(store_folder_path, "visual_canvas.png")
cv2.imwrite( visual_canvas_store_path, cv2.cvtColor(visual_canvas, cv2.COLOR_BGR2RGB) )
# Resize the map
canvas_width = resized_width + top_left_width + bottom_right_width
canvas_height = resized_height + top_left_height + bottom_right_height
# inference_canvas = cv2.resize(visual_canvas, (canvas_width, canvas_height), interpolation = cv2.INTER_AREA)
print("Canvas Shape is", str(canvas_height) + "x" + str(canvas_width) )
# TODO: 还要去enhance这个text prompt要跟QWen的保持一致的complexity的感觉。。。
# Save the text prompt
print("Text Prompt is", text_prompt)
with open(os.path.join(store_folder_path, 'text_prompt.txt'), 'w') as file:
file.write(text_prompt)
################################################## Motion Trajectory Condition #####################################################
# #Prepare the points in the linear way
full_pred_tracks = [[] for _ in range(num_frames)]
ID_tensor = None
# Iterate all tracking information for all objects
print("traj_lists is", traj_lists)
for instance_idx, traj_list_per_object in enumerate(traj_lists):
# Iterate all trajectory lines in one instance
for traj_idx, single_trajectory in enumerate(traj_list_per_object):
# Sanity Check
if len(single_trajectory) < 2:
raise gr.Error("One of the trajectory provided is too short!")
# Sampled the point based on the Euclidean distance
sampled_points = sample_traj_by_length(single_trajectory, num_frames)
# Iterate all points
temporal_idx = 0
for (raw_point_x, raw_point_y) in sampled_points:
# Scale the point coordinate to the Infernece Size (Realistic Canvas size)
point_x, point_y = int(raw_point_x * canvas_width / uniform_width), int(raw_point_y * canvas_height / uniform_height) # Clicking on the board is with respect to the Uniform Preset Height and Width
if traj_idx == 0: # Needs to init the list in list
full_pred_tracks[temporal_idx].append( [] )
full_pred_tracks[temporal_idx][-1].append( (point_x, point_y) ) # [-1] and [instance_idx] should have the same effect
temporal_idx += 1
# Create the traj tensor
print("visual_canvas shape is", visual_canvas.shape)
print("inference_canvas shape is", inference_canvas.shape)
traj_tensor, traj_imgs_np, _, img_with_traj = VideoDataset_Motion.prepare_traj_tensor(
full_pred_tracks, canvas_height, canvas_width,
[], dot_radius, canvas_width, canvas_height,
idx=0, first_frame_img = inference_canvas
)
# Store Trajectory
imageio.mimsave(os.path.join(store_folder_path, "traj_video.mp4"), traj_imgs_np, fps=8)
print("Save Traj video to tmp folder!")
######################################################################################################################################################
########################################## Prepare the Identity Reference Condition #####################################################
# ID reference preparation
if main_reference_img is not None:
print("We have an ID reference being used!")
# Fetch
ref_h, ref_w, _ = main_reference_img.shape
# Using breakpoint to extract the points
sam_predictor.set_image(np.uint8(main_reference_img))
# Define the sample point
sam_points = [(ref_w//2, ref_h//2)] # We don't need that many points to express [:len(traj_points)//2]
# Reverse traj_points
positive_point_cords = np.array(sam_points)
positive_point_labels = np.ones(len(positive_point_cords))
# Predict the mask based on the point and bounding box designed
masks, scores, logits = sam_predictor.predict(
point_coords = positive_point_cords,
point_labels = positive_point_labels,
multimask_output = False,
)
mask = masks[0]
main_reference_img[mask == False] = 0 # Merge the mask the first first frame
# Resize to the same resolution as the first frame
scale_h = canvas_height / max(ref_h, ref_w)
scale_w = canvas_width / max(ref_h, ref_w)
new_h, new_w = int(ref_h * scale_h), int(ref_w * scale_w)
main_reference_img = cv2.resize(main_reference_img, (new_w, new_h), interpolation = cv2.INTER_AREA)
# Calculate padding amounts on all direction
pad_height1 = (canvas_height - main_reference_img.shape[0]) // 2
pad_height2 = canvas_height - main_reference_img.shape[0] - pad_height1
pad_width1 = (canvas_width - main_reference_img.shape[1]) // 2
pad_width2 = canvas_width - main_reference_img.shape[1] - pad_width1
# Apply padding to same resolution as the training farmes
main_reference_img = np.pad(
main_reference_img,
((pad_height1, pad_height2), (pad_width1, pad_width2), (0, 0)),
mode = 'constant',
constant_values = 0
)
cv2.imwrite(os.path.join(store_folder_path, "ID.png"), cv2.cvtColor(main_reference_img, cv2.COLOR_BGR2RGB))
elif main_reference_img is None:
# Whole Black Color placeholder
main_reference_img = np.uint8(np.zeros((canvas_height, canvas_width, 3)))
# Convert to tensor
ID_tensor = torch.tensor(main_reference_img)
ID_tensor = train_transforms(ID_tensor).permute(2, 0, 1).contiguous()
if model_code_name == "Wan": # Needs to be the shape (B, C, F, H, W)
ID_tensor = ID_tensor.unsqueeze(0).unsqueeze(2)
###############################################################################################################################################
############################################# Call the Inference Pipeline ##########################################################
image = Image.fromarray(inference_canvas)
if model_code_name == "Wan":
video = pipe(
image = image,
prompt = text_prompt, negative_prompt = "", # Empty string as negative text prompt
traj_tensor = traj_tensor, # Should be shape (F, C, H, W)
ID_tensor = ID_tensor, # Should be shape (B, C, F, H, W)
height = canvas_height, width = canvas_width, num_frames = num_frames,
num_inference_steps = 50, # 38 is also ok
guidance_scale = 5.0,
).frames[0]
elif model_code_name == "CogVideoX":
video = pipe(
image = image,
prompt = text_prompt,
traj_tensor = traj_tensor,
ID_tensor = ID_tensor,
height = canvas_height, width = canvas_width, num_frames = len(traj_tensor),
guidance_scale = 6, use_dynamic_cfg = False,
num_inference_steps = 50,
add_ID_reference_augment_noise = True,
).frames[0]
# Store the reuslt
export_to_video(video, os.path.join(store_folder_path, "generated_video_padded.mp4"), fps=8)
# Save frames
print("Writing as Frames")
video_file_path = os.path.join(store_folder_path, "generated_video.mp4")
writer = imageio.get_writer(video_file_path, fps = 8)
for frame_idx, frame in enumerate(video):
# Extract Unpadded version
# frame = np.uint8(frame)
if model_code_name == "CogVideoX":
frame = np.asarray(frame) # PIL to RGB
bottom_right_y = frame.shape[0] - bottom_right_height
bottom_right_x = frame.shape[1] - bottom_right_width
cropped_region_frame = np.uint8(frame[top_left_height: bottom_right_y, top_left_width : bottom_right_x] * 255)
writer.append_data(cropped_region_frame)
writer.close()
#####################################################################################################################################
return gr.update(value = video_file_path, width = uniform_width, height = uniform_height)
if __name__ == '__main__':
# Global Setting
uniform_height = 480 # Visual Canvas as 480x720 is decent
uniform_width = 720
# Draw the Website
block = gr.Blocks().queue(max_size=10)
with block:
with gr.Row():
gr.Markdown(MARKDOWN)
with gr.Row(elem_classes=["container"]):
with gr.Column(scale=2):
# Input image
input_image = gr.Image(type="filepath", label="Input Image 🖼️ ")
# uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
with gr.Column(scale=2):
# Input image
resized_height = gr.Textbox(label="Resized Height for Input Image")
resized_width = gr.Textbox(label="Resized Width for Input Image")
# gr.Number(value=unit_height, label="Fixed", interactive=False)
# gr.Number(value=unit_height * 1.77777, label="Fixed", interactive=False)
# Input the expansion factor
top_left_height = gr.Textbox(label="Top-Left Expand Height")
top_left_width = gr.Textbox(label="Top-Left Expand Width")
bottom_right_height = gr.Textbox(label="Bottom-Right Expand Height")
bottom_right_width = gr.Textbox(label="Bottom-Right Expand Width")
# Button
build_canvas_btn = gr.Button(value="Build the Canvas")
with gr.Row():
with gr.Column(scale=3):
with gr.Row(scale=3):
visual_canvas = gr.Image(height = uniform_height, width = uniform_width, type="numpy", label='Expanded Canvas 🖼️ ')
# inference_canvas = gr.Image(height = uniform_height, width = uniform_width, type="numpy")
# inference_canvas = None
with gr.Row(scale=1):
# TODO: 还差clear traj的选择
add_point = gr.Button(value = "Add New Traj Line (Same Obj)", visible = True) # Add new trajectory for the same instance
add_traj = gr.Button(value = "Add New Instance (New Obj, including new ID)", visible = True)
clear_traj_button = gr.Button("Clear All Traj", visible=True)
with gr.Column(scale=2):
with gr.Row(scale=2):
identity_image = gr.Image(type="numpy", label="Identity Reference (SAM on center point only) 🖼️ ")
with gr.Row(scale=2):
text_prompt = gr.Textbox(label="Text Prompt", lines=3)
with gr.Row():
# Button
generation_btn = gr.Button(value="Generate!")
with gr.Row():
generated_video = gr.Video(value = None, label="Generated Video", show_label = True, height = uniform_height, width = uniform_width)
################################################################## Click + Select + Any Effect Area ###########################################################################
# Init some states that will be supporting purposes
traj_lists = gr.Textbox(label="Trajectory", visible = False) # gr.State(None) # Data Structure is: (Number of Instance, Number of Trajectories, Points) Init as [ [ [] ] ]
inference_canvas = gr.Image(height = uniform_height, width = uniform_width, type="numpy", visible=False) # TODO: Check
traj_instance_idx = gr.State(0)
initial_visual_canvas = gr.State(None) # gr.Image(height = uniform_height, width = uniform_width, type="numpy", label='Canvas Expanded Image (Initial State)') # This is the initila visual, used to load back in clearing
# Canvas Click
build_canvas_btn.click(
build_canvas,
inputs = [input_image, resized_height, resized_width, top_left_height, top_left_width, bottom_right_height, bottom_right_width],
outputs = [visual_canvas, initial_visual_canvas, inference_canvas, traj_instance_idx, traj_lists] # inference_canvas is used for inference; visual_canvas is for gradio visualization
)
# Draw Trajectory for each click on the canvas
visual_canvas.select(
fn = add_traj_point,
inputs = [visual_canvas, traj_lists, traj_instance_idx],
outputs = [visual_canvas, traj_lists]
)
# Add new Trajectory
add_point.click(
fn = traj_point_update,
inputs = [traj_lists],
outputs = [traj_lists],
)
add_traj.click(
fn = traj_instance_update,
inputs = [traj_instance_idx, traj_lists],
outputs = [traj_instance_idx, traj_lists],
)
# Clean all the traj points
clear_traj_button.click(
clear_traj_points,
[initial_visual_canvas],
[visual_canvas, traj_instance_idx, traj_lists],
)
# Inference Generation
generation_btn.click(
inference,
inputs = [inference_canvas, visual_canvas, text_prompt, traj_lists, identity_image, resized_height, resized_width, top_left_height, top_left_width, bottom_right_height, bottom_right_width],
outputs = [generated_video],
)
# Load Examples
with gr.Row(elem_classes=["container"]):
gr.Examples(
examples = get_example(),
inputs = [input_image, resized_height, resized_width, top_left_height, top_left_width, bottom_right_height, bottom_right_width, identity_image, text_prompt, traj_lists],
run_on_click = True,
fn = on_example_click,
outputs = [visual_canvas, initial_visual_canvas, inference_canvas, traj_instance_idx],
)
block.launch(share=True)
|