import os, sys, shutil from typing import List, Optional, Tuple, Union from pathlib import Path import csv import random import math import numpy as np import ffmpeg import json import imageio import collections import cv2 import pdb csv.field_size_limit(sys.maxsize) # Default setting is 131072, 100x expand should be enough import torch from torch.utils.data import Dataset from torchvision import transforms # Import files from the local folder root_path = os.path.abspath('.') sys.path.append(root_path) from utils.optical_flow_utils import flow_to_image, filter_uv, bivariate_Gaussian # Init paramter and global shared setting # Blurring Kernel blur_kernel = bivariate_Gaussian(45, 3, 3, 0, grid = None, isotropic = True) # Color all_color_codes = [(255, 0, 0), (255, 255, 0), (0, 255, 0), (0, 255, 255), (255, 0, 255), (0, 0, 255), (128, 128, 128), (64, 224, 208), (233, 150, 122)] for _ in range(100): # Should not be over 100 colors all_color_codes.append((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))) # Data Transforms train_transforms = transforms.Compose( [ transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0), ] ) class VideoDataset_Motion(Dataset): def __init__( self, config, download_folder_path, csv_relative_path, video_relative_path, is_diy_test = False, ) -> None: super().__init__() # Gen Size Settings # self.height_range = config["height_range"] # self.max_aspect_ratio = config["max_aspect_ratio"] self.target_height = config["target_height"] self.target_width = config["target_width"] self.sample_accelerate_factor = config["sample_accelerate_factor"] self.train_frame_num_range = config["train_frame_num_range"] # Condition Settings (Text, Motion, etc.) self.empty_text_prompt = config["empty_text_prompt"] self.dot_radius = int(config["dot_radius"]) self.point_keep_ratio = config["point_keep_ratio"] # Point selection mechanism self.faster_motion_prob = config["faster_motion_prob"] # Other Settings self.download_folder_path = download_folder_path self.is_diy_test = is_diy_test self.config = config self.video_folder_path = os.path.join(download_folder_path, video_relative_path) csv_folder_path = os.path.join(download_folder_path, csv_relative_path) # Sanity Check assert(os.path.exists(csv_folder_path)) assert(self.point_keep_ratio <= 1.0) # Read the CSV files info_lists = [] for csv_file_name in os.listdir(csv_folder_path): # Read all csv files csv_file_path = os.path.join(csv_folder_path, csv_file_name) with open(csv_file_path) as file_obj: reader_obj = csv.reader(file_obj) # Iterate over each row in the csv for idx, row in enumerate(reader_obj): if idx == 0: elements = dict() for element_idx, key in enumerate(row): elements[key] = element_idx continue # Read the important information info_lists.append(row) # Organize self.info_lists = info_lists self.element_idx_dict = elements # Log print("The number of videos for ", csv_folder_path, " is ", len(self.info_lists)) # print("The memory cost is ", sys.getsizeof(self.info_lists)) def __len__(self): return len(self.info_lists) @staticmethod def prepare_traj_tensor(full_pred_tracks, original_height, original_width, selected_frames, dot_radius, target_width, target_height, idx = 0, first_frame_img = None): # Prepare the color target_color_codes = all_color_codes[:len(full_pred_tracks[0])] # This means how many objects in total we have # Prepare the traj image traj_img_lists = [] # Set a new dot radius based on the resolution fluctuating dot_radius_resize = int( dot_radius * original_height / 384 ) # This is set with respect to default 384 height, will be adjust based on the height change # Prepare base draw image if there is if first_frame_img is not None: img_with_traj = first_frame_img.copy() # Iterate all temporal sequence merge_frames = [] for temporal_idx, points_per_frame in enumerate(full_pred_tracks): # Iterate all downsampled frames, should be 13 # Init the base img for the traj figures base_img = np.zeros((original_height, original_width, 3)).astype(np.float32) # Use the original image size base_img.fill(255) # Whole white frames # Iterate all points in each object for obj_idx, points_per_obj in enumerate(points_per_frame): # Basic setting color_code = target_color_codes[obj_idx] # Color across frames should be consistent # Process all points in this current object for (horizontal, vertical) in points_per_obj: if horizontal < 0 or horizontal >= original_width or vertical < 0 or vertical >= original_height: continue # If the point is already out of the range, Don't draw # Draw square around the target position vertical_start = min(original_height, max(0, vertical - dot_radius_resize)) vertical_end = min(original_height, max(0, vertical + dot_radius_resize)) # Diameter, used to be 10, but want smaller if there are too many points now horizontal_start = min(original_width, max(0, horizontal - dot_radius_resize)) horizontal_end = min(original_width, max(0, horizontal + dot_radius_resize)) # Paint base_img[vertical_start:vertical_end, horizontal_start:horizontal_end, :] = color_code # Draw the visual of traj if needed if first_frame_img is not None: img_with_traj[vertical_start:vertical_end, horizontal_start:horizontal_end, :] = color_code # Resize frames Don't use negative and don't resize in [0,1] base_img = cv2.resize(base_img, (target_width, target_height), interpolation = cv2.INTER_CUBIC) # Dilate (Default to be True) base_img = cv2.filter2D(base_img, -1, blur_kernel).astype(np.uint8) # Append selected_frames and the color together for visualization if len(selected_frames) != 0: merge_frame = selected_frames[temporal_idx].copy() merge_frame[base_img < 250] = base_img[base_img < 250] merge_frames.append(merge_frame) # cv2.imwrite("Video"+str(idx) + "_traj" + str(temporal_idx).zfill(2) + ".png", cv2.cvtColor(merge_frame, cv2.COLOR_RGB2BGR)) # Comment Out Later # Append to the temporal index traj_img_lists.append(base_img) # Convert to tensor traj_imgs_np = np.array(traj_img_lists) traj_tensor = torch.tensor(traj_imgs_np) # Transform traj_tensor = traj_tensor.float() traj_tensor = torch.stack([train_transforms(traj_frame) for traj_frame in traj_tensor], dim=0) traj_tensor = traj_tensor.permute(0, 3, 1, 2).contiguous() # [F, C, H, W] # Write to video (Comment Out Later) # imageio.mimsave("merge_cond" + str(idx) + ".mp4", merge_frames, fps=12) # Return merge_frames = np.array(merge_frames) if first_frame_img is not None: return traj_tensor, traj_imgs_np, merge_frames, img_with_traj else: return traj_tensor, traj_imgs_np, merge_frames # Need to return traj_imgs_np for other purpose def __getitem__(self, idx): while True: # Iterate until there is a valid video read # try: # Fetch the information info = self.info_lists[idx] video_path = os.path.join(self.video_folder_path, info[self.element_idx_dict["video_path"]]) original_height = int(info[self.element_idx_dict["height"]]) original_width = int(info[self.element_idx_dict["width"]]) # num_frames = int(info[self.element_idx_dict["num_frames"]]) # Deprecated, this is about the whole frame duration, not just one valid_duration = json.loads(info[self.element_idx_dict["valid_duration"]]) All_Frame_Panoptic_Segmentation = json.loads(info[self.element_idx_dict["Panoptic_Segmentation"]]) text_prompt_all = json.loads(info[self.element_idx_dict["Structured_Text_Prompt"]]) Track_Traj_all = json.loads(info[self.element_idx_dict["Track_Traj"]]) # NOTE: Same as above, only consider the first panoptic segmented frame Obj_Info_all = json.loads(info[self.element_idx_dict["Obj_Info"]]) # Sanity check if not os.path.exists(video_path): raise Exception("This video path", video_path, "doesn't exists!") ########################################## Mangage Resolution and selected Clip Setting ########################################## # Option1: Variable Resolution Gen # # Check the resolution size # aspect_ratio = min(self.max_aspect_ratio, original_width / original_height) # target_height_raw = min(original_height, random.randint(*self.height_range)) # target_width_raw = min(original_width, int(target_height_raw * aspect_ratio)) # # Must be the multiplier of 32 # target_height = (target_height_raw // 32) * 32 # target_width = (target_width_raw // 32) * 32 # print("New Height and Width are ", target_height, target_width) # Option2: Fixed Resolution Gen (Assume that the provided is 32x valid) target_width = self.target_width target_height = self.target_height # Only choose the first clip Obj_Info = Obj_Info_all[0] # For the Motion Training, we have enough dataset, so we just choose the first panoptic section Track_Traj = Track_Traj_all[0] text_prompt = text_prompt_all[0] resolution = str(target_width) + "x" + str(target_height) # Used for ffmpeg load frame_start_idx = Obj_Info[0][1] # NOTE: If there is multiple objects Obj_Info[X][1] should be the same ############################################################################################################################## ############################################## Read the video by ffmpeg ################################################# # Read the video by ffmpeg in the needed decode fps and resolution video_stream, err = ffmpeg.input( video_path ).output( "pipe:", format = "rawvideo", pix_fmt = "rgb24", s = resolution, vsync = 'passthrough', ).run( capture_stdout = True, capture_stderr = True # If there is bug, command capture_stderr ) # The resize is already included video_np_full = np.frombuffer(video_stream, np.uint8).reshape(-1, target_height, target_width, 3) # Fetch the valid duration video_np = video_np_full[valid_duration[0] : valid_duration[1]] valid_num_frames = len(video_np) # Update the number of frames # Decide the accelerate factor train_frame_num_raw = random.randint(*self.train_frame_num_range) if frame_start_idx + 3 * train_frame_num_raw < valid_num_frames and random.random() < self.faster_motion_prob: # Should be (1) have enough frames and (2) in 10% probability sample_accelerate_factor = self.sample_accelerate_factor + 1 # Hard Code else: sample_accelerate_factor = self.sample_accelerate_factor # Check the number of frames needed this time frame_end_idx = min(valid_num_frames, frame_start_idx + sample_accelerate_factor * train_frame_num_raw) frame_end_idx = frame_start_idx + 4 * math.floor(( (frame_end_idx-frame_start_idx) - 1) / 4) + 1 # Rounded to the closest 4N + 1 size # Select Frames and Convert to Tensor selected_frames = video_np[ frame_start_idx : frame_end_idx : sample_accelerate_factor] # NOTE: start from the first frame video_tensor = torch.tensor(selected_frames) # Convert to tensor first_frame_np = selected_frames[0] # Needs to return for Validation train_frame_num = len(video_tensor) # Read the actual number of frames from the video (Must be 4N+1) # Data transforms and shape organize video_tensor = video_tensor.float() video_tensor = torch.stack([train_transforms(frame) for frame in video_tensor], dim=0) video_tensor = video_tensor.permute(0, 3, 1, 2).contiguous() # [F, C, H, W] ############################################################################################################################# ######################################### Define the text prompt ####################################################### # NOTE: text prompt is fetched above; here, we just decide if we you empty string if self.empty_text_prompt or random.random() < self.config["text_mask_ratio"]: text_prompt = "" # print("Text Prompt for Video", idx, " is ", text_prompt) ######################################################################################################################## ###################### Prepare the Tracking points for each object (each object has different color) ################################# # Iterate all the segmentation info full_pred_tracks = [[] for _ in range(train_frame_num)] # The dim should be: (temporal, object, points, xy) The fps should be fixed to 12 fps, which is the same as training decode fps for track_obj_idx in range(len(Obj_Info)): # Read the basic info text_name, frame_idx_raw = Obj_Info[track_obj_idx] # This is expected to be all the same in the video # Sanity Check: make sure that the number of frames is consistent if track_obj_idx > 0: if frame_idx_raw != previous_frame_idx_raw: raise Exception("The panoptic_frame_idx cannot pass the sanity check") # Prepare the tracjectory pred_tracks_full = Track_Traj[track_obj_idx] pred_tracks = pred_tracks_full[ frame_start_idx : frame_end_idx : sample_accelerate_factor] if len(pred_tracks) != train_frame_num: raise Exception("The length of tracking images does not match the video GT.") # Randomly select the points based on the prob given, here, the number of points is different for each objeects kept_point_status = random.choices([True, False], weights = [self.point_keep_ratio, 1 - self.point_keep_ratio], k = len(pred_tracks[0])) if len(kept_point_status) != len(pred_tracks[-1]): raise Exception("The number of points filterred is not match with the dataset") # Iterate and add all temporally for temporal_idx, pred_track in enumerate(pred_tracks): # Iterate all point one by one left_points = [] for point_idx in range(len(pred_track)): if kept_point_status[point_idx]: left_points.append(pred_track[point_idx]) # Append the left points to the list full_pred_tracks[temporal_idx].append(left_points) # pred_tracks will be 49 frames, and each one represent all tracking points for single objects; only one object here # Other update previous_frame_idx_raw = frame_idx_raw # Draw the dilated traj points traj_tensor, traj_imgs_np, merge_frames = self.prepare_traj_tensor(full_pred_tracks, original_height, original_width, selected_frames, self.dot_radius, target_width, target_height, idx) # Sanity Check to make sure that the traj tensor and ground truth has the same number of frames if len(traj_tensor) != len(video_tensor): # If this two cannot match, the torch.cat on latents will fail raise Exception("Traj length and Video length does not matched!") ######################################################################################################################################### # except Exception as e: # Note: You can uncomment this part to jump failure cases in mass training. # print("The exception is ", e) # old_idx = idx # idx = (idx + 1) % len(self.info_lists) # print("We cannot process the video", old_idx, " and we choose a new idx of ", idx) # continue # For any error occurs, we run it again with new idx proposed (a random int less than current value) # If everything is ok, we should break at the end break # Return the information return { "video_tensor": video_tensor, "traj_tensor": traj_tensor, "text_prompt": text_prompt, # The rest are auxiliary data for the validation/testing purposes "video_gt_np": selected_frames, "first_frame_np": first_frame_np, "traj_imgs_np": traj_imgs_np, "merge_frames": merge_frames, "gt_video_path": video_path, }