Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,243 +1,30 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
-
from pydantic import BaseModel
|
| 4 |
-
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
|
| 5 |
-
import torch
|
| 6 |
-
from typing import Dict, List, Optional
|
| 7 |
-
import os
|
| 8 |
-
from firebase_service import firebase_service
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
allow_credentials=True,
|
| 17 |
-
allow_methods=["*"],
|
| 18 |
-
allow_headers=["*"],
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
# Global variables for model and tokenizer
|
| 22 |
-
model = None
|
| 23 |
-
tokenizer = None
|
| 24 |
-
device = None
|
| 25 |
-
|
| 26 |
-
# Labels for classification (inverted based on model training)
|
| 27 |
-
LABELS = {
|
| 28 |
-
0: "safe",
|
| 29 |
-
1: "threat"
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
SEVERITY_MAPPING = {
|
| 33 |
-
"safe": "none",
|
| 34 |
-
"threat": "high"
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
class MessageRequest(BaseModel):
|
| 38 |
-
text: str
|
| 39 |
-
app_name: Optional[str] = None
|
| 40 |
-
|
| 41 |
-
class MessageResponse(BaseModel):
|
| 42 |
-
text: str
|
| 43 |
-
is_harmful: bool
|
| 44 |
-
label: str
|
| 45 |
-
confidence: float
|
| 46 |
-
severity: str
|
| 47 |
-
details: Dict
|
| 48 |
-
|
| 49 |
-
class AuthenticatedUser(BaseModel):
|
| 50 |
-
uid: str
|
| 51 |
-
email: str
|
| 52 |
-
email_verified: bool
|
| 53 |
-
|
| 54 |
-
class UserStatsResponse(BaseModel):
|
| 55 |
-
total_alerts: int
|
| 56 |
-
high_severity: int
|
| 57 |
-
medium_severity: int
|
| 58 |
-
low_severity: int
|
| 59 |
-
|
| 60 |
-
# Authentication dependency
|
| 61 |
-
async def get_current_user(authorization: Optional[str] = Header(None)) -> Optional[AuthenticatedUser]:
|
| 62 |
-
"""Get current authenticated user from Firebase ID token"""
|
| 63 |
-
if not authorization or not authorization.startswith('Bearer '):
|
| 64 |
-
return None
|
| 65 |
-
|
| 66 |
-
token = authorization.split('Bearer ')[1]
|
| 67 |
-
user_data = firebase_service.verify_user_token(token)
|
| 68 |
-
|
| 69 |
-
if user_data:
|
| 70 |
-
return AuthenticatedUser(
|
| 71 |
-
uid=user_data['uid'],
|
| 72 |
-
email=user_data['email'],
|
| 73 |
-
email_verified=user_data['email_verified']
|
| 74 |
-
)
|
| 75 |
-
return None
|
| 76 |
-
|
| 77 |
-
@app.on_event("startup")
|
| 78 |
-
async def load_model():
|
| 79 |
-
"""Load the model and tokenizer on startup"""
|
| 80 |
-
global model, tokenizer, device
|
| 81 |
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
"
|
| 87 |
-
"final_cyberbullying_model"
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
print(f"Loading model from: {model_path}")
|
| 91 |
-
|
| 92 |
-
# Check if model exists
|
| 93 |
-
if not os.path.exists(model_path):
|
| 94 |
-
print(f"⚠️ Model path not found: {model_path}")
|
| 95 |
-
print("⚠️ Backend will run in demo mode without AI model")
|
| 96 |
-
return
|
| 97 |
-
|
| 98 |
-
# Set device
|
| 99 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 100 |
-
print(f"Using device: {device}")
|
| 101 |
-
|
| 102 |
-
# Load tokenizer and model
|
| 103 |
-
tokenizer = DistilBertTokenizer.from_pretrained(model_path)
|
| 104 |
-
model = DistilBertForSequenceClassification.from_pretrained(model_path)
|
| 105 |
-
model.to(device)
|
| 106 |
-
model.eval()
|
| 107 |
-
|
| 108 |
-
print("✅ Model loaded successfully!")
|
| 109 |
-
|
| 110 |
-
except Exception as e:
|
| 111 |
-
print(f"⚠️ Model loading failed: {str(e)}")
|
| 112 |
-
print("⚠️ Backend will run in demo mode without AI model")
|
| 113 |
-
# Don't raise - allow backend to start without model
|
| 114 |
-
model = None
|
| 115 |
-
tokenizer = None
|
| 116 |
-
|
| 117 |
-
@app.get("/")
|
| 118 |
-
async def root():
|
| 119 |
-
"""Health check endpoint"""
|
| 120 |
-
return {
|
| 121 |
-
"status": "online",
|
| 122 |
-
"message": "CyberGuard AI API is running",
|
| 123 |
-
"model_loaded": model is not None
|
| 124 |
-
}
|
| 125 |
-
|
| 126 |
-
@app.post("/analyze", response_model=MessageResponse)
|
| 127 |
-
async def analyze_message(request: MessageRequest, current_user: Optional[AuthenticatedUser] = Depends(get_current_user)):
|
| 128 |
-
"""Analyze a message for cyberbullying/threats"""
|
| 129 |
-
|
| 130 |
-
if model is None or tokenizer is None:
|
| 131 |
-
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 132 |
-
|
| 133 |
-
if not request.text or len(request.text.strip()) == 0:
|
| 134 |
-
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 135 |
-
|
| 136 |
-
try:
|
| 137 |
-
# Tokenize input
|
| 138 |
-
inputs = tokenizer(
|
| 139 |
-
request.text,
|
| 140 |
-
return_tensors="pt",
|
| 141 |
-
truncation=True,
|
| 142 |
-
max_length=512,
|
| 143 |
-
padding=True
|
| 144 |
-
)
|
| 145 |
-
|
| 146 |
-
# Move to device
|
| 147 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 148 |
-
|
| 149 |
-
# Get prediction
|
| 150 |
-
with torch.no_grad():
|
| 151 |
-
outputs = model(**inputs)
|
| 152 |
-
logits = outputs.logits
|
| 153 |
-
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 154 |
-
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
| 155 |
-
confidence = probabilities[0][predicted_class].item()
|
| 156 |
-
|
| 157 |
-
# Get label
|
| 158 |
-
label = LABELS.get(predicted_class, "unknown")
|
| 159 |
-
is_harmful = label == "threat"
|
| 160 |
-
severity = SEVERITY_MAPPING.get(label, "none")
|
| 161 |
-
|
| 162 |
-
# Additional details
|
| 163 |
-
details = {
|
| 164 |
-
"safe_probability": round(probabilities[0][0].item(), 4),
|
| 165 |
-
"threat_probability": round(probabilities[0][1].item(), 4),
|
| 166 |
-
"model": "DistilBERT",
|
| 167 |
-
"version": "1.0"
|
| 168 |
}
|
| 169 |
-
|
| 170 |
-
# Store alert if user is authenticated and threat is detected
|
| 171 |
-
if current_user and is_harmful:
|
| 172 |
-
alert_data = {
|
| 173 |
-
'timestamp': None, # Will be set by Firebase
|
| 174 |
-
'severity': severity,
|
| 175 |
-
'threat_type': 'cyberbullying',
|
| 176 |
-
'app_name': request.app_name,
|
| 177 |
-
'confidence': round(confidence, 4),
|
| 178 |
-
'model_version': '1.0'
|
| 179 |
-
}
|
| 180 |
-
firebase_service.store_threat_alert(current_user.uid, alert_data)
|
| 181 |
-
|
| 182 |
-
return MessageResponse(
|
| 183 |
-
text=request.text,
|
| 184 |
-
is_harmful=is_harmful,
|
| 185 |
-
label=label,
|
| 186 |
-
confidence=round(confidence, 4),
|
| 187 |
-
severity=severity,
|
| 188 |
-
details=details
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
except Exception as e:
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
"""
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
results = []
|
| 202 |
-
for text in messages:
|
| 203 |
-
if text and len(text.strip()) > 0:
|
| 204 |
-
response = await analyze_message(MessageRequest(text=text))
|
| 205 |
-
results.append(response.dict())
|
| 206 |
-
|
| 207 |
-
return {"results": results, "count": len(results)}
|
| 208 |
-
|
| 209 |
-
@app.get("/user/stats", response_model=UserStatsResponse)
|
| 210 |
-
async def get_user_stats(current_user: AuthenticatedUser = Depends(get_current_user)):
|
| 211 |
-
"""Get user's threat alert statistics"""
|
| 212 |
-
if not current_user:
|
| 213 |
-
raise HTTPException(status_code=401, detail="Authentication required")
|
| 214 |
-
|
| 215 |
-
stats = firebase_service.get_user_alert_stats(current_user.uid)
|
| 216 |
-
return UserStatsResponse(**stats)
|
| 217 |
-
|
| 218 |
-
@app.delete("/user/data")
|
| 219 |
-
async def delete_user_data(current_user: AuthenticatedUser = Depends(get_current_user)):
|
| 220 |
-
"""Delete all user data (GDPR compliance)"""
|
| 221 |
-
if not current_user:
|
| 222 |
-
raise HTTPException(status_code=401, detail="Authentication required")
|
| 223 |
-
|
| 224 |
-
success = firebase_service.delete_user_data(current_user.uid)
|
| 225 |
-
if success:
|
| 226 |
-
return {"message": "User data deleted successfully"}
|
| 227 |
-
else:
|
| 228 |
-
raise HTTPException(status_code=500, detail="Failed to delete user data")
|
| 229 |
-
|
| 230 |
-
@app.get("/health")
|
| 231 |
-
async def health_check():
|
| 232 |
-
"""Detailed health check"""
|
| 233 |
-
return {
|
| 234 |
-
"status": "healthy",
|
| 235 |
-
"model_loaded": model is not None,
|
| 236 |
-
"tokenizer_loaded": tokenizer is not None,
|
| 237 |
-
"device": str(device) if device else "unknown",
|
| 238 |
-
"firebase_initialized": firebase_service.is_initialized()
|
| 239 |
-
}
|
| 240 |
|
| 241 |
-
|
| 242 |
-
import uvicorn
|
| 243 |
-
uvicorn.run(app, host="0.0.0.0", port=8001)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
print("🔄 Loading CyberGuard Model...")
|
| 5 |
+
classifier = pipeline("text-classification", model="Jishnuuuu/cyberguard-v1")
|
| 6 |
+
print("✅ Model loaded successfully!")
|
| 7 |
|
| 8 |
+
def analyze_message(text):
|
| 9 |
+
"""Analyze message for cyberbullying threats"""
|
| 10 |
+
if not text or len(text.strip()) == 0:
|
| 11 |
+
return {"Label": "ERROR", "Confidence": 0.0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
try:
|
| 14 |
+
result = classifier(text)[0]
|
| 15 |
+
return {
|
| 16 |
+
"Label": result['label'],
|
| 17 |
+
"Confidence": round(result['score'], 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
except Exception as e:
|
| 20 |
+
return {"Label": "ERROR", "Confidence": 0.0, "error": str(e)}
|
| 21 |
+
|
| 22 |
+
demo = gr.Interface(
|
| 23 |
+
fn=analyze_message,
|
| 24 |
+
inputs=gr.Textbox(label="Message", placeholder="Type a message..."),
|
| 25 |
+
outputs=gr.JSON(label="Result"),
|
| 26 |
+
title="🛡️ CyberGuard AI",
|
| 27 |
+
description="Cyberbullying Detection - Model: Jishnuuuu/cyberguard-v1"
|
| 28 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
demo.launch()
|
|
|
|
|
|