Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,149 +1,203 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
| 4 |
import os
|
| 5 |
import tempfile
|
| 6 |
from PIL import Image, ImageDraw
|
| 7 |
import re
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
# -----------------------------------------
|
| 12 |
-
device = torch.device("cpu")
|
| 13 |
-
torch.set_default_device(device)
|
| 14 |
-
|
| 15 |
-
# -----------------------------------------
|
| 16 |
-
# 1. Load model ONCE at startup (CPU)
|
| 17 |
-
# -----------------------------------------
|
| 18 |
-
print("🔄 Loading model and tokenizer...")
|
| 19 |
model_name = "deepseek-ai/DeepSeek-OCR"
|
| 20 |
-
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 22 |
|
| 23 |
-
model
|
|
|
|
| 24 |
model_name,
|
| 25 |
trust_remote_code=True,
|
| 26 |
-
|
| 27 |
-
|
| 28 |
)
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
print("✅ Model loaded successfully (CPU mode)!")
|
| 32 |
-
|
| 33 |
-
# -----------------------------------------
|
| 34 |
-
# Helper: find generated result images
|
| 35 |
-
# -----------------------------------------
|
| 36 |
def find_result_image(path):
|
| 37 |
for filename in os.listdir(path):
|
| 38 |
if "grounding" in filename or "result" in filename:
|
| 39 |
try:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
return None
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
# 2. OCR main function
|
| 47 |
-
# -----------------------------------------
|
| 48 |
def process_ocr_task(image, model_size, task_type, ref_text):
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
if image is None:
|
| 51 |
-
return "Please upload image first.", None
|
| 52 |
-
|
| 53 |
-
print("
|
| 54 |
-
|
| 55 |
-
# Prompt logic
|
| 56 |
-
if task_type == "📝 Free OCR":
|
| 57 |
-
prompt = "<image>\nFree OCR."
|
| 58 |
-
elif task_type == "📄 Convert to Markdown":
|
| 59 |
-
prompt = "<image>\n<|grounding|>Convert document to markdown."
|
| 60 |
-
elif task_type == "📈 Parse Figure":
|
| 61 |
-
prompt = "<image>\nParse the figure."
|
| 62 |
-
elif task_type == "🔍 Locate Object by Reference":
|
| 63 |
-
if not ref_text.strip():
|
| 64 |
-
raise gr.Error("Reference text required!")
|
| 65 |
-
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
|
| 66 |
-
else:
|
| 67 |
-
prompt = "<image>\nFree OCR."
|
| 68 |
-
|
| 69 |
-
# Size configs
|
| 70 |
-
size_configs = {
|
| 71 |
-
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 72 |
-
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 73 |
-
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 74 |
-
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 75 |
-
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 76 |
-
}
|
| 77 |
-
config = size_configs[model_size]
|
| 78 |
-
|
| 79 |
-
# Temporary image save
|
| 80 |
-
with tempfile.TemporaryDirectory() as output_path:
|
| 81 |
-
img_path = os.path.join(output_path, "input.png")
|
| 82 |
-
image.save(img_path)
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
text_result = model.infer(
|
| 86 |
-
|
| 87 |
prompt=prompt,
|
| 88 |
-
|
|
|
|
| 89 |
base_size=config["base_size"],
|
| 90 |
image_size=config["image_size"],
|
| 91 |
-
crop_mode=config["crop_mode"]
|
|
|
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
|
| 94 |
-
print("
|
| 95 |
|
| 96 |
-
#
|
|
|
|
|
|
|
|
|
|
| 97 |
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
|
| 98 |
matches = list(pattern.finditer(text_result))
|
| 99 |
|
| 100 |
if matches:
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
w, h = image.size
|
| 104 |
|
| 105 |
-
for
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column(scale=1):
|
| 126 |
-
image_input = gr.Image(type="pil", label="Upload Image")
|
| 127 |
model_size = gr.Dropdown(
|
| 128 |
-
["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 129 |
-
value="
|
|
|
|
| 130 |
)
|
| 131 |
task_type = gr.Dropdown(
|
| 132 |
-
["📝 Free OCR", "📄 Convert to Markdown", "📈 Parse Figure", "🔍 Locate Object by Reference"],
|
| 133 |
-
value="📄 Convert to Markdown"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
)
|
| 135 |
-
|
| 136 |
-
btn = gr.Button("🚀 Process")
|
| 137 |
|
| 138 |
with gr.Column(scale=2):
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
if __name__ == "__main__":
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
import os
|
| 5 |
import tempfile
|
| 6 |
from PIL import Image, ImageDraw
|
| 7 |
import re
|
| 8 |
|
| 9 |
+
# --- 1. Load Model and Tokenizer (CPU only) ---
|
| 10 |
+
print("Loading model and tokenizer on CPU...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
model_name = "deepseek-ai/DeepSeek-OCR"
|
|
|
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 13 |
|
| 14 |
+
# Load model directly to CPU without flash_attention_2 (GPU-only feature)
|
| 15 |
+
model = AutoModel.from_pretrained(
|
| 16 |
model_name,
|
| 17 |
trust_remote_code=True,
|
| 18 |
+
use_safetensors=True,
|
| 19 |
+
torch_dtype=torch.float32 # Use float32 for CPU
|
| 20 |
)
|
| 21 |
+
model = model.eval()
|
| 22 |
+
print("✅ Model loaded successfully on CPU.")
|
| 23 |
|
| 24 |
+
# --- Helper function to find pre-generated result images ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def find_result_image(path):
|
| 26 |
for filename in os.listdir(path):
|
| 27 |
if "grounding" in filename or "result" in filename:
|
| 28 |
try:
|
| 29 |
+
image_path = os.path.join(path, filename)
|
| 30 |
+
return Image.open(image_path)
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Error opening result image {filename}: {e}")
|
| 33 |
return None
|
| 34 |
|
| 35 |
+
# --- 2. Main Processing Function (CPU version) ---
|
|
|
|
|
|
|
| 36 |
def process_ocr_task(image, model_size, task_type, ref_text):
|
| 37 |
+
"""
|
| 38 |
+
Processes an image with DeepSeek-OCR for all supported tasks.
|
| 39 |
+
CPU-only version without GPU decorators.
|
| 40 |
+
"""
|
| 41 |
if image is None:
|
| 42 |
+
return "Please upload an image first.", None
|
| 43 |
+
|
| 44 |
+
print("🚀 Processing on CPU...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
with tempfile.TemporaryDirectory() as output_path:
|
| 47 |
+
# Build the prompt
|
| 48 |
+
if task_type == "📝 Free OCR":
|
| 49 |
+
prompt = "<image>\nFree OCR."
|
| 50 |
+
elif task_type == "📄 Convert to Markdown":
|
| 51 |
+
prompt = "<image>\n<|grounding|>Convert the document to markdown."
|
| 52 |
+
elif task_type == "📈 Parse Figure":
|
| 53 |
+
prompt = "<image>\nParse the figure."
|
| 54 |
+
elif task_type == "🔍 Locate Object by Reference":
|
| 55 |
+
if not ref_text or ref_text.strip() == "":
|
| 56 |
+
raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
|
| 57 |
+
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
|
| 58 |
+
else:
|
| 59 |
+
prompt = "<image>\nFree OCR."
|
| 60 |
+
|
| 61 |
+
temp_image_path = os.path.join(output_path, "temp_image.png")
|
| 62 |
+
image.save(temp_image_path)
|
| 63 |
+
|
| 64 |
+
# Configure model size
|
| 65 |
+
size_configs = {
|
| 66 |
+
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 67 |
+
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 68 |
+
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 69 |
+
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 70 |
+
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 71 |
+
}
|
| 72 |
+
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
| 73 |
+
|
| 74 |
+
print(f"🏃 Running inference with prompt: {prompt}")
|
| 75 |
+
|
| 76 |
+
# Run inference on CPU (model is already on CPU)
|
| 77 |
text_result = model.infer(
|
| 78 |
+
tokenizer,
|
| 79 |
prompt=prompt,
|
| 80 |
+
image_file=temp_image_path,
|
| 81 |
+
output_path=output_path,
|
| 82 |
base_size=config["base_size"],
|
| 83 |
image_size=config["image_size"],
|
| 84 |
+
crop_mode=config["crop_mode"],
|
| 85 |
+
save_results=True,
|
| 86 |
+
test_compress=True,
|
| 87 |
+
eval_mode=True,
|
| 88 |
)
|
| 89 |
|
| 90 |
+
print(f"====\n📄 Text Result: {text_result}\n====")
|
| 91 |
|
| 92 |
+
# Try to find and draw all bounding boxes
|
| 93 |
+
result_image_pil = None
|
| 94 |
+
|
| 95 |
+
# Pattern to find coordinates like [[280, 15, 696, 997]]
|
| 96 |
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
|
| 97 |
matches = list(pattern.finditer(text_result))
|
| 98 |
|
| 99 |
if matches:
|
| 100 |
+
print(f"✅ Found {len(matches)} bounding box(es). Drawing on the original image.")
|
| 101 |
+
|
| 102 |
+
# Create a copy of the original image to draw on
|
| 103 |
+
image_with_bboxes = image.copy()
|
| 104 |
+
draw = ImageDraw.Draw(image_with_bboxes)
|
| 105 |
w, h = image.size
|
| 106 |
|
| 107 |
+
for match in matches:
|
| 108 |
+
# Extract coordinates as integers
|
| 109 |
+
coords_norm = [int(c) for c in match.groups()]
|
| 110 |
+
x1_norm, y1_norm, x2_norm, y2_norm = coords_norm
|
| 111 |
+
|
| 112 |
+
# Scale normalized coordinates to actual image size
|
| 113 |
+
x1 = int(x1_norm / 1000 * w)
|
| 114 |
+
y1 = int(y1_norm / 1000 * h)
|
| 115 |
+
x2 = int(x2_norm / 1000 * w)
|
| 116 |
+
y2 = int(y2_norm / 1000 * h)
|
| 117 |
+
|
| 118 |
+
# Draw rectangle with red outline
|
| 119 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
|
| 120 |
+
|
| 121 |
+
result_image_pil = image_with_bboxes
|
| 122 |
+
else:
|
| 123 |
+
print("⚠️ No bounding box coordinates found. Falling back to search for result image file.")
|
| 124 |
+
result_image_pil = find_result_image(output_path)
|
| 125 |
+
|
| 126 |
+
return text_result, result_image_pil
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# --- 3. Build the Gradio Interface ---
|
| 130 |
+
with gr.Blocks(title="🐳DeepSeek-OCR (CPU)🐳", theme=gr.themes.Soft()) as demo:
|
| 131 |
+
gr.Markdown(
|
| 132 |
+
"""
|
| 133 |
+
# 🐳 DeepSeek-OCR (CPU Version) 🐳
|
| 134 |
+
**⚠️ Note: Running on CPU - processing will be slower than GPU version**
|
| 135 |
+
|
| 136 |
+
**💡 How to use:**
|
| 137 |
+
1. **Upload an image** using the upload box.
|
| 138 |
+
2. Select a **Resolution**. Start with `Tiny` or `Small` for faster CPU processing.
|
| 139 |
+
3. Choose a **Task Type**:
|
| 140 |
+
- **📝 Free OCR**: Extracts raw text from the image.
|
| 141 |
+
- **📄 Convert to Markdown**: Converts the document into Markdown.
|
| 142 |
+
- **📈 Parse Figure**: Extracts structured data from charts.
|
| 143 |
+
- **🔍 Locate Object by Reference**: Finds a specific object/text.
|
| 144 |
+
4. If this helpful, please give it a like! 🙏 ❤️
|
| 145 |
+
"""
|
| 146 |
+
)
|
| 147 |
|
| 148 |
with gr.Row():
|
| 149 |
with gr.Column(scale=1):
|
| 150 |
+
image_input = gr.Image(type="pil", label="🖼️ Upload Image", sources=["upload", "clipboard"])
|
| 151 |
model_size = gr.Dropdown(
|
| 152 |
+
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 153 |
+
value="Small", # Default to Small for faster CPU processing
|
| 154 |
+
label="⚙️ Resolution Size"
|
| 155 |
)
|
| 156 |
task_type = gr.Dropdown(
|
| 157 |
+
choices=["📝 Free OCR", "📄 Convert to Markdown", "📈 Parse Figure", "🔍 Locate Object by Reference"],
|
| 158 |
+
value="📄 Convert to Markdown",
|
| 159 |
+
label="🚀 Task Type"
|
| 160 |
+
)
|
| 161 |
+
ref_text_input = gr.Textbox(
|
| 162 |
+
label="📝 Reference Text (for Locate task)",
|
| 163 |
+
placeholder="e.g., the teacher, 20-10, a red car...",
|
| 164 |
+
visible=False
|
| 165 |
)
|
| 166 |
+
submit_btn = gr.Button("Process Image", variant="primary")
|
|
|
|
| 167 |
|
| 168 |
with gr.Column(scale=2):
|
| 169 |
+
output_text = gr.Textbox(label="📄 Text Result", lines=15, show_copy_button=True)
|
| 170 |
+
output_image = gr.Image(label="🖼️ Image Result (if any)", type="pil")
|
| 171 |
+
|
| 172 |
+
# UI Interaction Logic
|
| 173 |
+
def toggle_ref_text_visibility(task):
|
| 174 |
+
return gr.Textbox(visible=True) if task == "🔍 Locate Object by Reference" else gr.Textbox(visible=False)
|
| 175 |
+
|
| 176 |
+
task_type.change(fn=toggle_ref_text_visibility, inputs=task_type, outputs=ref_text_input)
|
| 177 |
+
submit_btn.click(
|
| 178 |
+
fn=process_ocr_task,
|
| 179 |
+
inputs=[image_input, model_size, task_type, ref_text_input],
|
| 180 |
+
outputs=[output_text, output_image]
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Examples
|
| 184 |
+
gr.Examples(
|
| 185 |
+
examples=[
|
| 186 |
+
["doc_markdown.png", "Small", "📄 Convert to Markdown", ""],
|
| 187 |
+
["chart.png", "Small", "📈 Parse Figure", ""],
|
| 188 |
+
["teacher.jpg", "Tiny", "🔍 Locate Object by Reference", "the teacher"],
|
| 189 |
+
["math_locate.jpg", "Tiny", "🔍 Locate Object by Reference", "20-10"],
|
| 190 |
+
["receipt.jpg", "Small", "📝 Free OCR", ""],
|
| 191 |
+
],
|
| 192 |
+
inputs=[image_input, model_size, task_type, ref_text_input],
|
| 193 |
+
outputs=[output_text, output_image],
|
| 194 |
+
fn=process_ocr_task,
|
| 195 |
+
cache_examples=False,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# --- 4. Launch the App ---
|
| 199 |
if __name__ == "__main__":
|
| 200 |
+
if not os.path.exists("examples"):
|
| 201 |
+
os.makedirs("examples")
|
| 202 |
+
|
| 203 |
+
demo.queue(max_size=5).launch(share=True) # Reduced queue size for CPU
|