Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import List, Optional, Sequence, Tuple | |
| import torch | |
| import torch.nn as nn | |
| from mmcv.cnn import ConvModule, Scale | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.registry import MODELS | |
| from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, | |
| OptInstanceList, reduce_mean) | |
| from ..task_modules.prior_generators import anchor_inside_flags | |
| from ..utils import images_to_levels, multi_apply, unmap | |
| from .anchor_head import AnchorHead | |
| class ATSSHead(AnchorHead): | |
| """Detection Head of `ATSS <https://arxiv.org/abs/1912.02424>`_. | |
| ATSS head structure is similar with FCOS, however ATSS use anchor boxes | |
| and assign label by Adaptive Training Sample Selection instead max-iou. | |
| Args: | |
| num_classes (int): Number of categories excluding the background | |
| category. | |
| in_channels (int): Number of channels in the input feature map. | |
| pred_kernel_size (int): Kernel size of ``nn.Conv2d`` | |
| stacked_convs (int): Number of stacking convs of the head. | |
| conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
| convolution layer. Defaults to None. | |
| norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization | |
| layer. Defaults to ``dict(type='GN', num_groups=32, | |
| requires_grad=True)``. | |
| reg_decoded_bbox (bool): If true, the regression loss would be | |
| applied directly on decoded bounding boxes, converting both | |
| the predicted boxes and regression targets to absolute | |
| coordinates format. Defaults to False. It should be `True` when | |
| using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. | |
| loss_centerness (:obj:`ConfigDict` or dict): Config of centerness loss. | |
| Defaults to ``dict(type='CrossEntropyLoss', use_sigmoid=True, | |
| loss_weight=1.0)``. | |
| init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
| list[:obj:`ConfigDict`]): Initialization config dict. | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| pred_kernel_size: int = 3, | |
| stacked_convs: int = 4, | |
| conv_cfg: OptConfigType = None, | |
| norm_cfg: ConfigType = dict( | |
| type='GN', num_groups=32, requires_grad=True), | |
| reg_decoded_bbox: bool = True, | |
| loss_centerness: ConfigType = dict( | |
| type='CrossEntropyLoss', | |
| use_sigmoid=True, | |
| loss_weight=1.0), | |
| init_cfg: MultiConfig = dict( | |
| type='Normal', | |
| layer='Conv2d', | |
| std=0.01, | |
| override=dict( | |
| type='Normal', | |
| name='atss_cls', | |
| std=0.01, | |
| bias_prob=0.01)), | |
| **kwargs) -> None: | |
| self.pred_kernel_size = pred_kernel_size | |
| self.stacked_convs = stacked_convs | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| super().__init__( | |
| num_classes=num_classes, | |
| in_channels=in_channels, | |
| reg_decoded_bbox=reg_decoded_bbox, | |
| init_cfg=init_cfg, | |
| **kwargs) | |
| self.sampling = False | |
| self.loss_centerness = MODELS.build(loss_centerness) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| self.relu = nn.ReLU(inplace=True) | |
| self.cls_convs = nn.ModuleList() | |
| self.reg_convs = nn.ModuleList() | |
| for i in range(self.stacked_convs): | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| self.cls_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg)) | |
| self.reg_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg)) | |
| pred_pad_size = self.pred_kernel_size // 2 | |
| self.atss_cls = nn.Conv2d( | |
| self.feat_channels, | |
| self.num_anchors * self.cls_out_channels, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size) | |
| self.atss_reg = nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * 4, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size) | |
| self.atss_centerness = nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * 1, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size) | |
| self.scales = nn.ModuleList( | |
| [Scale(1.0) for _ in self.prior_generator.strides]) | |
| def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
| """Forward features from the upstream network. | |
| Args: | |
| x (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: Usually a tuple of classification scores and bbox prediction | |
| cls_scores (list[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_anchors * num_classes. | |
| bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_anchors * 4. | |
| """ | |
| return multi_apply(self.forward_single, x, self.scales) | |
| def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: | |
| """Forward feature of a single scale level. | |
| Args: | |
| x (Tensor): Features of a single scale level. | |
| scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
| the bbox prediction. | |
| Returns: | |
| tuple: | |
| cls_score (Tensor): Cls scores for a single scale level | |
| the channels number is num_anchors * num_classes. | |
| bbox_pred (Tensor): Box energies / deltas for a single scale | |
| level, the channels number is num_anchors * 4. | |
| centerness (Tensor): Centerness for a single scale level, the | |
| channel number is (N, num_anchors * 1, H, W). | |
| """ | |
| cls_feat = x | |
| reg_feat = x | |
| for cls_conv in self.cls_convs: | |
| cls_feat = cls_conv(cls_feat) | |
| for reg_conv in self.reg_convs: | |
| reg_feat = reg_conv(reg_feat) | |
| cls_score = self.atss_cls(cls_feat) | |
| # we just follow atss, not apply exp in bbox_pred | |
| bbox_pred = scale(self.atss_reg(reg_feat)).float() | |
| centerness = self.atss_centerness(reg_feat) | |
| return cls_score, bbox_pred, centerness | |
| def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor, | |
| bbox_pred: Tensor, centerness: Tensor, | |
| labels: Tensor, label_weights: Tensor, | |
| bbox_targets: Tensor, avg_factor: float) -> dict: | |
| """Calculate the loss of a single scale level based on the features | |
| extracted by the detection head. | |
| Args: | |
| cls_score (Tensor): Box scores for each scale level | |
| Has shape (N, num_anchors * num_classes, H, W). | |
| bbox_pred (Tensor): Box energies / deltas for each scale | |
| level with shape (N, num_anchors * 4, H, W). | |
| anchors (Tensor): Box reference for each scale level with shape | |
| (N, num_total_anchors, 4). | |
| labels (Tensor): Labels of each anchors with shape | |
| (N, num_total_anchors). | |
| label_weights (Tensor): Label weights of each anchor with shape | |
| (N, num_total_anchors) | |
| bbox_targets (Tensor): BBox regression targets of each anchor with | |
| shape (N, num_total_anchors, 4). | |
| avg_factor (float): Average factor that is used to average | |
| the loss. When using sampling method, avg_factor is usually | |
| the sum of positive and negative priors. When using | |
| `PseudoSampler`, `avg_factor` is usually equal to the number | |
| of positive priors. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| anchors = anchors.reshape(-1, 4) | |
| cls_score = cls_score.permute(0, 2, 3, 1).reshape( | |
| -1, self.cls_out_channels).contiguous() | |
| bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
| centerness = centerness.permute(0, 2, 3, 1).reshape(-1) | |
| bbox_targets = bbox_targets.reshape(-1, 4) | |
| labels = labels.reshape(-1) | |
| label_weights = label_weights.reshape(-1) | |
| # classification loss | |
| loss_cls = self.loss_cls( | |
| cls_score, labels, label_weights, avg_factor=avg_factor) | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| bg_class_ind = self.num_classes | |
| pos_inds = ((labels >= 0) | |
| & (labels < bg_class_ind)).nonzero().squeeze(1) | |
| if len(pos_inds) > 0: | |
| pos_bbox_targets = bbox_targets[pos_inds] | |
| pos_bbox_pred = bbox_pred[pos_inds] | |
| pos_anchors = anchors[pos_inds] | |
| pos_centerness = centerness[pos_inds] | |
| centerness_targets = self.centerness_target( | |
| pos_anchors, pos_bbox_targets) | |
| pos_decode_bbox_pred = self.bbox_coder.decode( | |
| pos_anchors, pos_bbox_pred) | |
| # regression loss | |
| loss_bbox = self.loss_bbox( | |
| pos_decode_bbox_pred, | |
| pos_bbox_targets, | |
| weight=centerness_targets, | |
| avg_factor=1.0) | |
| # centerness loss | |
| loss_centerness = self.loss_centerness( | |
| pos_centerness, centerness_targets, avg_factor=avg_factor) | |
| else: | |
| loss_bbox = bbox_pred.sum() * 0 | |
| loss_centerness = centerness.sum() * 0 | |
| centerness_targets = bbox_targets.new_tensor(0.) | |
| return loss_cls, loss_bbox, loss_centerness, centerness_targets.sum() | |
| def loss_by_feat( | |
| self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| centernesses: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
| """Calculate the loss based on the features extracted by the detection | |
| head. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores for each scale level | |
| Has shape (N, num_anchors * num_classes, H, W) | |
| bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
| level with shape (N, num_anchors * 4, H, W) | |
| centernesses (list[Tensor]): Centerness for each scale | |
| level with shape (N, num_anchors * 1, H, W) | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds] | |
| assert len(featmap_sizes) == self.prior_generator.num_levels | |
| device = cls_scores[0].device | |
| anchor_list, valid_flag_list = self.get_anchors( | |
| featmap_sizes, batch_img_metas, device=device) | |
| cls_reg_targets = self.get_targets( | |
| anchor_list, | |
| valid_flag_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore=batch_gt_instances_ignore) | |
| (anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
| bbox_weights_list, avg_factor) = cls_reg_targets | |
| avg_factor = reduce_mean( | |
| torch.tensor(avg_factor, dtype=torch.float, device=device)).item() | |
| losses_cls, losses_bbox, loss_centerness, \ | |
| bbox_avg_factor = multi_apply( | |
| self.loss_by_feat_single, | |
| anchor_list, | |
| cls_scores, | |
| bbox_preds, | |
| centernesses, | |
| labels_list, | |
| label_weights_list, | |
| bbox_targets_list, | |
| avg_factor=avg_factor) | |
| bbox_avg_factor = sum(bbox_avg_factor) | |
| bbox_avg_factor = reduce_mean(bbox_avg_factor).clamp_(min=1).item() | |
| losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) | |
| return dict( | |
| loss_cls=losses_cls, | |
| loss_bbox=losses_bbox, | |
| loss_centerness=loss_centerness) | |
| def centerness_target(self, anchors: Tensor, gts: Tensor) -> Tensor: | |
| """Calculate the centerness between anchors and gts. | |
| Only calculate pos centerness targets, otherwise there may be nan. | |
| Args: | |
| anchors (Tensor): Anchors with shape (N, 4), "xyxy" format. | |
| gts (Tensor): Ground truth bboxes with shape (N, 4), "xyxy" format. | |
| Returns: | |
| Tensor: Centerness between anchors and gts. | |
| """ | |
| anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2 | |
| anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2 | |
| l_ = anchors_cx - gts[:, 0] | |
| t_ = anchors_cy - gts[:, 1] | |
| r_ = gts[:, 2] - anchors_cx | |
| b_ = gts[:, 3] - anchors_cy | |
| left_right = torch.stack([l_, r_], dim=1) | |
| top_bottom = torch.stack([t_, b_], dim=1) | |
| centerness = torch.sqrt( | |
| (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * | |
| (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])) | |
| assert not torch.isnan(centerness).any() | |
| return centerness | |
| def get_targets(self, | |
| anchor_list: List[List[Tensor]], | |
| valid_flag_list: List[List[Tensor]], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None, | |
| unmap_outputs: bool = True) -> tuple: | |
| """Get targets for ATSS head. | |
| This method is almost the same as `AnchorHead.get_targets()`. Besides | |
| returning the targets as the parent method does, it also returns the | |
| anchors as the first element of the returned tuple. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
| # anchor number of multi levels | |
| num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
| num_level_anchors_list = [num_level_anchors] * num_imgs | |
| # concat all level anchors and flags to a single tensor | |
| for i in range(num_imgs): | |
| assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
| anchor_list[i] = torch.cat(anchor_list[i]) | |
| valid_flag_list[i] = torch.cat(valid_flag_list[i]) | |
| # compute targets for each image | |
| if batch_gt_instances_ignore is None: | |
| batch_gt_instances_ignore = [None] * num_imgs | |
| (all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
| all_bbox_weights, pos_inds_list, neg_inds_list, | |
| sampling_results_list) = multi_apply( | |
| self._get_targets_single, | |
| anchor_list, | |
| valid_flag_list, | |
| num_level_anchors_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore, | |
| unmap_outputs=unmap_outputs) | |
| # Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
| # When using sampling method, avg_factor is usually the sum of | |
| # positive and negative priors. When using `PseudoSampler`, | |
| # `avg_factor` is usually equal to the number of positive priors. | |
| avg_factor = sum( | |
| [results.avg_factor for results in sampling_results_list]) | |
| # split targets to a list w.r.t. multiple levels | |
| anchors_list = images_to_levels(all_anchors, num_level_anchors) | |
| labels_list = images_to_levels(all_labels, num_level_anchors) | |
| label_weights_list = images_to_levels(all_label_weights, | |
| num_level_anchors) | |
| bbox_targets_list = images_to_levels(all_bbox_targets, | |
| num_level_anchors) | |
| bbox_weights_list = images_to_levels(all_bbox_weights, | |
| num_level_anchors) | |
| return (anchors_list, labels_list, label_weights_list, | |
| bbox_targets_list, bbox_weights_list, avg_factor) | |
| def _get_targets_single(self, | |
| flat_anchors: Tensor, | |
| valid_flags: Tensor, | |
| num_level_anchors: List[int], | |
| gt_instances: InstanceData, | |
| img_meta: dict, | |
| gt_instances_ignore: Optional[InstanceData] = None, | |
| unmap_outputs: bool = True) -> tuple: | |
| """Compute regression, classification targets for anchors in a single | |
| image. | |
| Args: | |
| flat_anchors (Tensor): Multi-level anchors of the image, which are | |
| concatenated into a single tensor of shape (num_anchors ,4) | |
| valid_flags (Tensor): Multi level valid flags of the image, | |
| which are concatenated into a single tensor of | |
| shape (num_anchors,). | |
| num_level_anchors (List[int]): Number of anchors of each scale | |
| level. | |
| gt_instances (:obj:`InstanceData`): Ground truth of instance | |
| annotations. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| img_meta (dict): Meta information for current image. | |
| gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
| to be ignored during training. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): Whether to map outputs back to the original | |
| set of anchors. | |
| Returns: | |
| tuple: N is the number of total anchors in the image. | |
| labels (Tensor): Labels of all anchors in the image with shape | |
| (N,). | |
| label_weights (Tensor): Label weights of all anchor in the | |
| image with shape (N,). | |
| bbox_targets (Tensor): BBox targets of all anchors in the | |
| image with shape (N, 4). | |
| bbox_weights (Tensor): BBox weights of all anchors in the | |
| image with shape (N, 4) | |
| pos_inds (Tensor): Indices of positive anchor with shape | |
| (num_pos,). | |
| neg_inds (Tensor): Indices of negative anchor with shape | |
| (num_neg,). | |
| sampling_result (:obj:`SamplingResult`): Sampling results. | |
| """ | |
| inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
| img_meta['img_shape'][:2], | |
| self.train_cfg['allowed_border']) | |
| if not inside_flags.any(): | |
| raise ValueError( | |
| 'There is no valid anchor inside the image boundary. Please ' | |
| 'check the image size and anchor sizes, or set ' | |
| '``allowed_border`` to -1 to skip the condition.') | |
| # assign gt and sample anchors | |
| anchors = flat_anchors[inside_flags, :] | |
| num_level_anchors_inside = self.get_num_level_anchors_inside( | |
| num_level_anchors, inside_flags) | |
| pred_instances = InstanceData(priors=anchors) | |
| assign_result = self.assigner.assign(pred_instances, | |
| num_level_anchors_inside, | |
| gt_instances, gt_instances_ignore) | |
| sampling_result = self.sampler.sample(assign_result, pred_instances, | |
| gt_instances) | |
| num_valid_anchors = anchors.shape[0] | |
| bbox_targets = torch.zeros_like(anchors) | |
| bbox_weights = torch.zeros_like(anchors) | |
| labels = anchors.new_full((num_valid_anchors, ), | |
| self.num_classes, | |
| dtype=torch.long) | |
| label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
| pos_inds = sampling_result.pos_inds | |
| neg_inds = sampling_result.neg_inds | |
| if len(pos_inds) > 0: | |
| if self.reg_decoded_bbox: | |
| pos_bbox_targets = sampling_result.pos_gt_bboxes | |
| else: | |
| pos_bbox_targets = self.bbox_coder.encode( | |
| sampling_result.pos_priors, sampling_result.pos_gt_bboxes) | |
| bbox_targets[pos_inds, :] = pos_bbox_targets | |
| bbox_weights[pos_inds, :] = 1.0 | |
| labels[pos_inds] = sampling_result.pos_gt_labels | |
| if self.train_cfg['pos_weight'] <= 0: | |
| label_weights[pos_inds] = 1.0 | |
| else: | |
| label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
| if len(neg_inds) > 0: | |
| label_weights[neg_inds] = 1.0 | |
| # map up to original set of anchors | |
| if unmap_outputs: | |
| num_total_anchors = flat_anchors.size(0) | |
| anchors = unmap(anchors, num_total_anchors, inside_flags) | |
| labels = unmap( | |
| labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
| label_weights = unmap(label_weights, num_total_anchors, | |
| inside_flags) | |
| bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
| bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
| return (anchors, labels, label_weights, bbox_targets, bbox_weights, | |
| pos_inds, neg_inds, sampling_result) | |
| def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): | |
| """Get the number of valid anchors in every level.""" | |
| split_inside_flags = torch.split(inside_flags, num_level_anchors) | |
| num_level_anchors_inside = [ | |
| int(flags.sum()) for flags in split_inside_flags | |
| ] | |
| return num_level_anchors_inside | |