Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import List, Optional, Sequence, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from mmcv.cnn import ConvModule, Scale | |
| from mmengine.config import ConfigDict | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.registry import MODELS, TASK_UTILS | |
| from mmdet.structures.bbox import bbox_overlaps | |
| from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, | |
| OptInstanceList, reduce_mean) | |
| from ..task_modules.prior_generators import anchor_inside_flags | |
| from ..task_modules.samplers import PseudoSampler | |
| from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply, | |
| unmap) | |
| from .anchor_head import AnchorHead | |
| class Integral(nn.Module): | |
| """A fixed layer for calculating integral result from distribution. | |
| This layer calculates the target location by :math: ``sum{P(y_i) * y_i}``, | |
| P(y_i) denotes the softmax vector that represents the discrete distribution | |
| y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} | |
| Args: | |
| reg_max (int): The maximal value of the discrete set. Defaults to 16. | |
| You may want to reset it according to your new dataset or related | |
| settings. | |
| """ | |
| def __init__(self, reg_max: int = 16) -> None: | |
| super().__init__() | |
| self.reg_max = reg_max | |
| self.register_buffer('project', | |
| torch.linspace(0, self.reg_max, self.reg_max + 1)) | |
| def forward(self, x: Tensor) -> Tensor: | |
| """Forward feature from the regression head to get integral result of | |
| bounding box location. | |
| Args: | |
| x (Tensor): Features of the regression head, shape (N, 4*(n+1)), | |
| n is self.reg_max. | |
| Returns: | |
| x (Tensor): Integral result of box locations, i.e., distance | |
| offsets from the box center in four directions, shape (N, 4). | |
| """ | |
| x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) | |
| x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) | |
| return x | |
| class GFLHead(AnchorHead): | |
| """Generalized Focal Loss: Learning Qualified and Distributed Bounding | |
| Boxes for Dense Object Detection. | |
| GFL head structure is similar with ATSS, however GFL uses | |
| 1) joint representation for classification and localization quality, and | |
| 2) flexible General distribution for bounding box locations, | |
| which are supervised by | |
| Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively | |
| https://arxiv.org/abs/2006.04388 | |
| Args: | |
| num_classes (int): Number of categories excluding the background | |
| category. | |
| in_channels (int): Number of channels in the input feature map. | |
| stacked_convs (int): Number of conv layers in cls and reg tower. | |
| Defaults to 4. | |
| conv_cfg (:obj:`ConfigDict` or dict, optional): dictionary to construct | |
| and config conv layer. Defaults to None. | |
| norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and | |
| config norm layer. Default: dict(type='GN', num_groups=32, | |
| requires_grad=True). | |
| loss_qfl (:obj:`ConfigDict` or dict): Config of Quality Focal Loss | |
| (QFL). | |
| bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder. Defaults | |
| to 'DistancePointBBoxCoder'. | |
| reg_max (int): Max value of integral set :math: ``{0, ..., reg_max}`` | |
| in QFL setting. Defaults to 16. | |
| init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
| list[:obj:`ConfigDict`]): Initialization config dict. | |
| Example: | |
| >>> self = GFLHead(11, 7) | |
| >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] | |
| >>> cls_quality_score, bbox_pred = self.forward(feats) | |
| >>> assert len(cls_quality_score) == len(self.scales) | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| stacked_convs: int = 4, | |
| conv_cfg: OptConfigType = None, | |
| norm_cfg: ConfigType = dict( | |
| type='GN', num_groups=32, requires_grad=True), | |
| loss_dfl: ConfigType = dict( | |
| type='DistributionFocalLoss', loss_weight=0.25), | |
| bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'), | |
| reg_max: int = 16, | |
| init_cfg: MultiConfig = dict( | |
| type='Normal', | |
| layer='Conv2d', | |
| std=0.01, | |
| override=dict( | |
| type='Normal', | |
| name='gfl_cls', | |
| std=0.01, | |
| bias_prob=0.01)), | |
| **kwargs) -> None: | |
| self.stacked_convs = stacked_convs | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.reg_max = reg_max | |
| super().__init__( | |
| num_classes=num_classes, | |
| in_channels=in_channels, | |
| bbox_coder=bbox_coder, | |
| init_cfg=init_cfg, | |
| **kwargs) | |
| if self.train_cfg: | |
| self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
| if self.train_cfg.get('sampler', None) is not None: | |
| self.sampler = TASK_UTILS.build( | |
| self.train_cfg['sampler'], default_args=dict(context=self)) | |
| else: | |
| self.sampler = PseudoSampler(context=self) | |
| self.integral = Integral(self.reg_max) | |
| self.loss_dfl = MODELS.build(loss_dfl) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| self.relu = nn.ReLU() | |
| self.cls_convs = nn.ModuleList() | |
| self.reg_convs = nn.ModuleList() | |
| for i in range(self.stacked_convs): | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| self.cls_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg)) | |
| self.reg_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg)) | |
| assert self.num_anchors == 1, 'anchor free version' | |
| self.gfl_cls = nn.Conv2d( | |
| self.feat_channels, self.cls_out_channels, 3, padding=1) | |
| self.gfl_reg = nn.Conv2d( | |
| self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) | |
| self.scales = nn.ModuleList( | |
| [Scale(1.0) for _ in self.prior_generator.strides]) | |
| def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
| """Forward features from the upstream network. | |
| Args: | |
| x (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: Usually a tuple of classification scores and bbox prediction | |
| - cls_scores (list[Tensor]): Classification and quality (IoU) | |
| joint scores for all scale levels, each is a 4D-tensor, | |
| the channel number is num_classes. | |
| - bbox_preds (list[Tensor]): Box distribution logits for all | |
| scale levels, each is a 4D-tensor, the channel number is | |
| 4*(n+1), n is max value of integral set. | |
| """ | |
| return multi_apply(self.forward_single, x, self.scales) | |
| def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: | |
| """Forward feature of a single scale level. | |
| Args: | |
| x (Tensor): Features of a single scale level. | |
| scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
| the bbox prediction. | |
| Returns: | |
| tuple: | |
| - cls_score (Tensor): Cls and quality joint scores for a single | |
| scale level the channel number is num_classes. | |
| - bbox_pred (Tensor): Box distribution logits for a single scale | |
| level, the channel number is 4*(n+1), n is max value of | |
| integral set. | |
| """ | |
| cls_feat = x | |
| reg_feat = x | |
| for cls_conv in self.cls_convs: | |
| cls_feat = cls_conv(cls_feat) | |
| for reg_conv in self.reg_convs: | |
| reg_feat = reg_conv(reg_feat) | |
| cls_score = self.gfl_cls(cls_feat) | |
| bbox_pred = scale(self.gfl_reg(reg_feat)).float() | |
| return cls_score, bbox_pred | |
| def anchor_center(self, anchors: Tensor) -> Tensor: | |
| """Get anchor centers from anchors. | |
| Args: | |
| anchors (Tensor): Anchor list with shape (N, 4), ``xyxy`` format. | |
| Returns: | |
| Tensor: Anchor centers with shape (N, 2), ``xy`` format. | |
| """ | |
| anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2 | |
| anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2 | |
| return torch.stack([anchors_cx, anchors_cy], dim=-1) | |
| def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor, | |
| bbox_pred: Tensor, labels: Tensor, | |
| label_weights: Tensor, bbox_targets: Tensor, | |
| stride: Tuple[int], avg_factor: int) -> dict: | |
| """Calculate the loss of a single scale level based on the features | |
| extracted by the detection head. | |
| Args: | |
| anchors (Tensor): Box reference for each scale level with shape | |
| (N, num_total_anchors, 4). | |
| cls_score (Tensor): Cls and quality joint scores for each scale | |
| level has shape (N, num_classes, H, W). | |
| bbox_pred (Tensor): Box distribution logits for each scale | |
| level with shape (N, 4*(n+1), H, W), n is max value of integral | |
| set. | |
| labels (Tensor): Labels of each anchors with shape | |
| (N, num_total_anchors). | |
| label_weights (Tensor): Label weights of each anchor with shape | |
| (N, num_total_anchors) | |
| bbox_targets (Tensor): BBox regression targets of each anchor with | |
| shape (N, num_total_anchors, 4). | |
| stride (Tuple[int]): Stride in this scale level. | |
| avg_factor (int): Average factor that is used to average | |
| the loss. When using sampling method, avg_factor is usually | |
| the sum of positive and negative priors. When using | |
| `PseudoSampler`, `avg_factor` is usually equal to the number | |
| of positive priors. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| assert stride[0] == stride[1], 'h stride is not equal to w stride!' | |
| anchors = anchors.reshape(-1, 4) | |
| cls_score = cls_score.permute(0, 2, 3, | |
| 1).reshape(-1, self.cls_out_channels) | |
| bbox_pred = bbox_pred.permute(0, 2, 3, | |
| 1).reshape(-1, 4 * (self.reg_max + 1)) | |
| bbox_targets = bbox_targets.reshape(-1, 4) | |
| labels = labels.reshape(-1) | |
| label_weights = label_weights.reshape(-1) | |
| # FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
| bg_class_ind = self.num_classes | |
| pos_inds = ((labels >= 0) | |
| & (labels < bg_class_ind)).nonzero().squeeze(1) | |
| score = label_weights.new_zeros(labels.shape) | |
| if len(pos_inds) > 0: | |
| pos_bbox_targets = bbox_targets[pos_inds] | |
| pos_bbox_pred = bbox_pred[pos_inds] | |
| pos_anchors = anchors[pos_inds] | |
| pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] | |
| weight_targets = cls_score.detach().sigmoid() | |
| weight_targets = weight_targets.max(dim=1)[0][pos_inds] | |
| pos_bbox_pred_corners = self.integral(pos_bbox_pred) | |
| pos_decode_bbox_pred = self.bbox_coder.decode( | |
| pos_anchor_centers, pos_bbox_pred_corners) | |
| pos_decode_bbox_targets = pos_bbox_targets / stride[0] | |
| score[pos_inds] = bbox_overlaps( | |
| pos_decode_bbox_pred.detach(), | |
| pos_decode_bbox_targets, | |
| is_aligned=True) | |
| pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) | |
| target_corners = self.bbox_coder.encode(pos_anchor_centers, | |
| pos_decode_bbox_targets, | |
| self.reg_max).reshape(-1) | |
| # regression loss | |
| loss_bbox = self.loss_bbox( | |
| pos_decode_bbox_pred, | |
| pos_decode_bbox_targets, | |
| weight=weight_targets, | |
| avg_factor=1.0) | |
| # dfl loss | |
| loss_dfl = self.loss_dfl( | |
| pred_corners, | |
| target_corners, | |
| weight=weight_targets[:, None].expand(-1, 4).reshape(-1), | |
| avg_factor=4.0) | |
| else: | |
| loss_bbox = bbox_pred.sum() * 0 | |
| loss_dfl = bbox_pred.sum() * 0 | |
| weight_targets = bbox_pred.new_tensor(0) | |
| # cls (qfl) loss | |
| loss_cls = self.loss_cls( | |
| cls_score, (labels, score), | |
| weight=label_weights, | |
| avg_factor=avg_factor) | |
| return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() | |
| def loss_by_feat( | |
| self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
| """Calculate the loss based on the features extracted by the detection | |
| head. | |
| Args: | |
| cls_scores (list[Tensor]): Cls and quality scores for each scale | |
| level has shape (N, num_classes, H, W). | |
| bbox_preds (list[Tensor]): Box distribution logits for each scale | |
| level with shape (N, 4*(n+1), H, W), n is max value of integral | |
| set. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| assert len(featmap_sizes) == self.prior_generator.num_levels | |
| device = cls_scores[0].device | |
| anchor_list, valid_flag_list = self.get_anchors( | |
| featmap_sizes, batch_img_metas, device=device) | |
| cls_reg_targets = self.get_targets( | |
| anchor_list, | |
| valid_flag_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore=batch_gt_instances_ignore) | |
| (anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
| bbox_weights_list, avg_factor) = cls_reg_targets | |
| avg_factor = reduce_mean( | |
| torch.tensor(avg_factor, dtype=torch.float, device=device)).item() | |
| losses_cls, losses_bbox, losses_dfl,\ | |
| avg_factor = multi_apply( | |
| self.loss_by_feat_single, | |
| anchor_list, | |
| cls_scores, | |
| bbox_preds, | |
| labels_list, | |
| label_weights_list, | |
| bbox_targets_list, | |
| self.prior_generator.strides, | |
| avg_factor=avg_factor) | |
| avg_factor = sum(avg_factor) | |
| avg_factor = reduce_mean(avg_factor).clamp_(min=1).item() | |
| losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) | |
| losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) | |
| return dict( | |
| loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) | |
| def _predict_by_feat_single(self, | |
| cls_score_list: List[Tensor], | |
| bbox_pred_list: List[Tensor], | |
| score_factor_list: List[Tensor], | |
| mlvl_priors: List[Tensor], | |
| img_meta: dict, | |
| cfg: ConfigDict, | |
| rescale: bool = False, | |
| with_nms: bool = True) -> InstanceData: | |
| """Transform a single image's features extracted from the head into | |
| bbox results. | |
| Args: | |
| cls_score_list (list[Tensor]): Box scores from all scale | |
| levels of a single image, each item has shape | |
| (num_priors * num_classes, H, W). | |
| bbox_pred_list (list[Tensor]): Box energies / deltas from | |
| all scale levels of a single image, each item has shape | |
| (num_priors * 4, H, W). | |
| score_factor_list (list[Tensor]): Score factor from all scale | |
| levels of a single image. GFL head does not need this value. | |
| mlvl_priors (list[Tensor]): Each element in the list is | |
| the priors of a single level in feature pyramid, has shape | |
| (num_priors, 4). | |
| img_meta (dict): Image meta info. | |
| cfg (:obj: `ConfigDict`): Test / postprocessing configuration, | |
| if None, test_cfg would be used. | |
| rescale (bool): If True, return boxes in original image space. | |
| Defaults to False. | |
| with_nms (bool): If True, do nms before return boxes. | |
| Defaults to True. | |
| Returns: | |
| tuple[Tensor]: Results of detected bboxes and labels. If with_nms | |
| is False and mlvl_score_factor is None, return mlvl_bboxes and | |
| mlvl_scores, else return mlvl_bboxes, mlvl_scores and | |
| mlvl_score_factor. Usually with_nms is False is used for aug | |
| test. If with_nms is True, then return the following format | |
| - det_bboxes (Tensor): Predicted bboxes with shape | |
| [num_bboxes, 5], where the first 4 columns are bounding | |
| box positions (tl_x, tl_y, br_x, br_y) and the 5-th | |
| column are scores between 0 and 1. | |
| - det_labels (Tensor): Predicted labels of the corresponding | |
| box with shape [num_bboxes]. | |
| """ | |
| cfg = self.test_cfg if cfg is None else cfg | |
| img_shape = img_meta['img_shape'] | |
| nms_pre = cfg.get('nms_pre', -1) | |
| mlvl_bboxes = [] | |
| mlvl_scores = [] | |
| mlvl_labels = [] | |
| for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate( | |
| zip(cls_score_list, bbox_pred_list, | |
| self.prior_generator.strides, mlvl_priors)): | |
| assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
| assert stride[0] == stride[1] | |
| bbox_pred = bbox_pred.permute(1, 2, 0) | |
| bbox_pred = self.integral(bbox_pred) * stride[0] | |
| scores = cls_score.permute(1, 2, 0).reshape( | |
| -1, self.cls_out_channels).sigmoid() | |
| # After https://github.com/open-mmlab/mmdetection/pull/6268/, | |
| # this operation keeps fewer bboxes under the same `nms_pre`. | |
| # There is no difference in performance for most models. If you | |
| # find a slight drop in performance, you can set a larger | |
| # `nms_pre` than before. | |
| results = filter_scores_and_topk( | |
| scores, cfg.score_thr, nms_pre, | |
| dict(bbox_pred=bbox_pred, priors=priors)) | |
| scores, labels, _, filtered_results = results | |
| bbox_pred = filtered_results['bbox_pred'] | |
| priors = filtered_results['priors'] | |
| bboxes = self.bbox_coder.decode( | |
| self.anchor_center(priors), bbox_pred, max_shape=img_shape) | |
| mlvl_bboxes.append(bboxes) | |
| mlvl_scores.append(scores) | |
| mlvl_labels.append(labels) | |
| results = InstanceData() | |
| results.bboxes = torch.cat(mlvl_bboxes) | |
| results.scores = torch.cat(mlvl_scores) | |
| results.labels = torch.cat(mlvl_labels) | |
| return self._bbox_post_process( | |
| results=results, | |
| cfg=cfg, | |
| rescale=rescale, | |
| with_nms=with_nms, | |
| img_meta=img_meta) | |
| def get_targets(self, | |
| anchor_list: List[Tensor], | |
| valid_flag_list: List[Tensor], | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None, | |
| unmap_outputs=True) -> tuple: | |
| """Get targets for GFL head. | |
| This method is almost the same as `AnchorHead.get_targets()`. Besides | |
| returning the targets as the parent method does, it also returns the | |
| anchors as the first element of the returned tuple. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
| # anchor number of multi levels | |
| num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
| num_level_anchors_list = [num_level_anchors] * num_imgs | |
| # concat all level anchors and flags to a single tensor | |
| for i in range(num_imgs): | |
| assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
| anchor_list[i] = torch.cat(anchor_list[i]) | |
| valid_flag_list[i] = torch.cat(valid_flag_list[i]) | |
| # compute targets for each image | |
| if batch_gt_instances_ignore is None: | |
| batch_gt_instances_ignore = [None] * num_imgs | |
| (all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
| all_bbox_weights, pos_inds_list, neg_inds_list, | |
| sampling_results_list) = multi_apply( | |
| self._get_targets_single, | |
| anchor_list, | |
| valid_flag_list, | |
| num_level_anchors_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore, | |
| unmap_outputs=unmap_outputs) | |
| # Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
| # When using sampling method, avg_factor is usually the sum of | |
| # positive and negative priors. When using `PseudoSampler`, | |
| # `avg_factor` is usually equal to the number of positive priors. | |
| avg_factor = sum( | |
| [results.avg_factor for results in sampling_results_list]) | |
| # split targets to a list w.r.t. multiple levels | |
| anchors_list = images_to_levels(all_anchors, num_level_anchors) | |
| labels_list = images_to_levels(all_labels, num_level_anchors) | |
| label_weights_list = images_to_levels(all_label_weights, | |
| num_level_anchors) | |
| bbox_targets_list = images_to_levels(all_bbox_targets, | |
| num_level_anchors) | |
| bbox_weights_list = images_to_levels(all_bbox_weights, | |
| num_level_anchors) | |
| return (anchors_list, labels_list, label_weights_list, | |
| bbox_targets_list, bbox_weights_list, avg_factor) | |
| def _get_targets_single(self, | |
| flat_anchors: Tensor, | |
| valid_flags: Tensor, | |
| num_level_anchors: List[int], | |
| gt_instances: InstanceData, | |
| img_meta: dict, | |
| gt_instances_ignore: Optional[InstanceData] = None, | |
| unmap_outputs: bool = True) -> tuple: | |
| """Compute regression, classification targets for anchors in a single | |
| image. | |
| Args: | |
| flat_anchors (Tensor): Multi-level anchors of the image, which are | |
| concatenated into a single tensor of shape (num_anchors, 4) | |
| valid_flags (Tensor): Multi level valid flags of the image, | |
| which are concatenated into a single tensor of | |
| shape (num_anchors,). | |
| num_level_anchors (list[int]): Number of anchors of each scale | |
| level. | |
| gt_instances (:obj:`InstanceData`): Ground truth of instance | |
| annotations. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| img_meta (dict): Meta information for current image. | |
| gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
| to be ignored during training. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| unmap_outputs (bool): Whether to map outputs back to the original | |
| set of anchors. Defaults to True. | |
| Returns: | |
| tuple: N is the number of total anchors in the image. | |
| - anchors (Tensor): All anchors in the image with shape (N, 4). | |
| - labels (Tensor): Labels of all anchors in the image with | |
| shape (N,). | |
| - label_weights (Tensor): Label weights of all anchor in the | |
| image with shape (N,). | |
| - bbox_targets (Tensor): BBox targets of all anchors in the | |
| image with shape (N, 4). | |
| - bbox_weights (Tensor): BBox weights of all anchors in the | |
| image with shape (N, 4). | |
| - pos_inds (Tensor): Indices of positive anchor with shape | |
| (num_pos,). | |
| - neg_inds (Tensor): Indices of negative anchor with shape | |
| (num_neg,). | |
| - sampling_result (:obj:`SamplingResult`): Sampling results. | |
| """ | |
| inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
| img_meta['img_shape'][:2], | |
| self.train_cfg['allowed_border']) | |
| if not inside_flags.any(): | |
| raise ValueError( | |
| 'There is no valid anchor inside the image boundary. Please ' | |
| 'check the image size and anchor sizes, or set ' | |
| '``allowed_border`` to -1 to skip the condition.') | |
| # assign gt and sample anchors | |
| anchors = flat_anchors[inside_flags, :] | |
| num_level_anchors_inside = self.get_num_level_anchors_inside( | |
| num_level_anchors, inside_flags) | |
| pred_instances = InstanceData(priors=anchors) | |
| assign_result = self.assigner.assign( | |
| pred_instances=pred_instances, | |
| num_level_priors=num_level_anchors_inside, | |
| gt_instances=gt_instances, | |
| gt_instances_ignore=gt_instances_ignore) | |
| sampling_result = self.sampler.sample( | |
| assign_result=assign_result, | |
| pred_instances=pred_instances, | |
| gt_instances=gt_instances) | |
| num_valid_anchors = anchors.shape[0] | |
| bbox_targets = torch.zeros_like(anchors) | |
| bbox_weights = torch.zeros_like(anchors) | |
| labels = anchors.new_full((num_valid_anchors, ), | |
| self.num_classes, | |
| dtype=torch.long) | |
| label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
| pos_inds = sampling_result.pos_inds | |
| neg_inds = sampling_result.neg_inds | |
| if len(pos_inds) > 0: | |
| pos_bbox_targets = sampling_result.pos_gt_bboxes | |
| bbox_targets[pos_inds, :] = pos_bbox_targets | |
| bbox_weights[pos_inds, :] = 1.0 | |
| labels[pos_inds] = sampling_result.pos_gt_labels | |
| if self.train_cfg['pos_weight'] <= 0: | |
| label_weights[pos_inds] = 1.0 | |
| else: | |
| label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
| if len(neg_inds) > 0: | |
| label_weights[neg_inds] = 1.0 | |
| # map up to original set of anchors | |
| if unmap_outputs: | |
| num_total_anchors = flat_anchors.size(0) | |
| anchors = unmap(anchors, num_total_anchors, inside_flags) | |
| labels = unmap( | |
| labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
| label_weights = unmap(label_weights, num_total_anchors, | |
| inside_flags) | |
| bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
| bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
| return (anchors, labels, label_weights, bbox_targets, bbox_weights, | |
| pos_inds, neg_inds, sampling_result) | |
| def get_num_level_anchors_inside(self, num_level_anchors: List[int], | |
| inside_flags: Tensor) -> List[int]: | |
| """Get the number of valid anchors in every level.""" | |
| split_inside_flags = torch.split(inside_flags, num_level_anchors) | |
| num_level_anchors_inside = [ | |
| int(flags.sum()) for flags in split_inside_flags | |
| ] | |
| return num_level_anchors_inside | |