Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import math | |
| from typing import List, Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from mmcv.cnn import ConvModule, is_norm | |
| from mmcv.ops import batched_nms | |
| from mmengine.model import (BaseModule, bias_init_with_prob, constant_init, | |
| normal_init) | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| from mmdet.models.layers.transformer import inverse_sigmoid | |
| from mmdet.models.utils import (filter_scores_and_topk, multi_apply, | |
| select_single_mlvl, sigmoid_geometric_mean) | |
| from mmdet.registry import MODELS | |
| from mmdet.structures.bbox import (cat_boxes, distance2bbox, get_box_tensor, | |
| get_box_wh, scale_boxes) | |
| from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean | |
| from .rtmdet_head import RTMDetHead | |
| class RTMDetInsHead(RTMDetHead): | |
| """Detection Head of RTMDet-Ins. | |
| Args: | |
| num_prototypes (int): Number of mask prototype features extracted | |
| from the mask head. Defaults to 8. | |
| dyconv_channels (int): Channel of the dynamic conv layers. | |
| Defaults to 8. | |
| num_dyconvs (int): Number of the dynamic convolution layers. | |
| Defaults to 3. | |
| mask_loss_stride (int): Down sample stride of the masks for loss | |
| computation. Defaults to 4. | |
| loss_mask (:obj:`ConfigDict` or dict): Config dict for mask loss. | |
| """ | |
| def __init__(self, | |
| *args, | |
| num_prototypes: int = 8, | |
| dyconv_channels: int = 8, | |
| num_dyconvs: int = 3, | |
| mask_loss_stride: int = 4, | |
| loss_mask=dict( | |
| type='DiceLoss', | |
| loss_weight=2.0, | |
| eps=5e-6, | |
| reduction='mean'), | |
| **kwargs) -> None: | |
| self.num_prototypes = num_prototypes | |
| self.num_dyconvs = num_dyconvs | |
| self.dyconv_channels = dyconv_channels | |
| self.mask_loss_stride = mask_loss_stride | |
| super().__init__(*args, **kwargs) | |
| self.loss_mask = MODELS.build(loss_mask) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| super()._init_layers() | |
| # a branch to predict kernels of dynamic convs | |
| self.kernel_convs = nn.ModuleList() | |
| # calculate num dynamic parameters | |
| weight_nums, bias_nums = [], [] | |
| for i in range(self.num_dyconvs): | |
| if i == 0: | |
| weight_nums.append( | |
| # mask prototype and coordinate features | |
| (self.num_prototypes + 2) * self.dyconv_channels) | |
| bias_nums.append(self.dyconv_channels * 1) | |
| elif i == self.num_dyconvs - 1: | |
| weight_nums.append(self.dyconv_channels * 1) | |
| bias_nums.append(1) | |
| else: | |
| weight_nums.append(self.dyconv_channels * self.dyconv_channels) | |
| bias_nums.append(self.dyconv_channels * 1) | |
| self.weight_nums = weight_nums | |
| self.bias_nums = bias_nums | |
| self.num_gen_params = sum(weight_nums) + sum(bias_nums) | |
| for i in range(self.stacked_convs): | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| self.kernel_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| pred_pad_size = self.pred_kernel_size // 2 | |
| self.rtm_kernel = nn.Conv2d( | |
| self.feat_channels, | |
| self.num_gen_params, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size) | |
| self.mask_head = MaskFeatModule( | |
| in_channels=self.in_channels, | |
| feat_channels=self.feat_channels, | |
| stacked_convs=4, | |
| num_levels=len(self.prior_generator.strides), | |
| num_prototypes=self.num_prototypes, | |
| act_cfg=self.act_cfg, | |
| norm_cfg=self.norm_cfg) | |
| def forward(self, feats: Tuple[Tensor, ...]) -> tuple: | |
| """Forward features from the upstream network. | |
| Args: | |
| feats (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: Usually a tuple of classification scores and bbox prediction | |
| - cls_scores (list[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * num_classes. | |
| - bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * 4. | |
| - kernel_preds (list[Tensor]): Dynamic conv kernels for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_gen_params. | |
| - mask_feat (Tensor): Output feature of the mask head. Each is a | |
| 4D-tensor, the channels number is num_prototypes. | |
| """ | |
| mask_feat = self.mask_head(feats) | |
| cls_scores = [] | |
| bbox_preds = [] | |
| kernel_preds = [] | |
| for idx, (x, scale, stride) in enumerate( | |
| zip(feats, self.scales, self.prior_generator.strides)): | |
| cls_feat = x | |
| reg_feat = x | |
| kernel_feat = x | |
| for cls_layer in self.cls_convs: | |
| cls_feat = cls_layer(cls_feat) | |
| cls_score = self.rtm_cls(cls_feat) | |
| for kernel_layer in self.kernel_convs: | |
| kernel_feat = kernel_layer(kernel_feat) | |
| kernel_pred = self.rtm_kernel(kernel_feat) | |
| for reg_layer in self.reg_convs: | |
| reg_feat = reg_layer(reg_feat) | |
| if self.with_objectness: | |
| objectness = self.rtm_obj(reg_feat) | |
| cls_score = inverse_sigmoid( | |
| sigmoid_geometric_mean(cls_score, objectness)) | |
| reg_dist = scale(self.rtm_reg(reg_feat)) * stride[0] | |
| cls_scores.append(cls_score) | |
| bbox_preds.append(reg_dist) | |
| kernel_preds.append(kernel_pred) | |
| return tuple(cls_scores), tuple(bbox_preds), tuple( | |
| kernel_preds), mask_feat | |
| def predict_by_feat(self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| kernel_preds: List[Tensor], | |
| mask_feat: Tensor, | |
| score_factors: Optional[List[Tensor]] = None, | |
| batch_img_metas: Optional[List[dict]] = None, | |
| cfg: Optional[ConfigType] = None, | |
| rescale: bool = False, | |
| with_nms: bool = True) -> InstanceList: | |
| """Transform a batch of output features extracted from the head into | |
| bbox results. | |
| Note: When score_factors is not None, the cls_scores are | |
| usually multiplied by it then obtain the real score used in NMS, | |
| such as CenterNess in FCOS, IoU branch in ATSS. | |
| Args: | |
| cls_scores (list[Tensor]): Classification scores for all | |
| scale levels, each is a 4D-tensor, has shape | |
| (batch_size, num_priors * num_classes, H, W). | |
| bbox_preds (list[Tensor]): Box energies / deltas for all | |
| scale levels, each is a 4D-tensor, has shape | |
| (batch_size, num_priors * 4, H, W). | |
| kernel_preds (list[Tensor]): Kernel predictions of dynamic | |
| convs for all scale levels, each is a 4D-tensor, has shape | |
| (batch_size, num_params, H, W). | |
| mask_feat (Tensor): Mask prototype features extracted from the | |
| mask head, has shape (batch_size, num_prototypes, H, W). | |
| score_factors (list[Tensor], optional): Score factor for | |
| all scale level, each is a 4D-tensor, has shape | |
| (batch_size, num_priors * 1, H, W). Defaults to None. | |
| batch_img_metas (list[dict], Optional): Batch image meta info. | |
| Defaults to None. | |
| cfg (ConfigDict, optional): Test / postprocessing | |
| configuration, if None, test_cfg would be used. | |
| Defaults to None. | |
| rescale (bool): If True, return boxes in original image space. | |
| Defaults to False. | |
| with_nms (bool): If True, do nms before return boxes. | |
| Defaults to True. | |
| Returns: | |
| list[:obj:`InstanceData`]: Object detection results of each image | |
| after the post process. Each item usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape | |
| (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), | |
| the last dimension 4 arrange as (x1, y1, x2, y2). | |
| - masks (Tensor): Has a shape (num_instances, h, w). | |
| """ | |
| assert len(cls_scores) == len(bbox_preds) | |
| if score_factors is None: | |
| # e.g. Retina, FreeAnchor, Foveabox, etc. | |
| with_score_factors = False | |
| else: | |
| # e.g. FCOS, PAA, ATSS, AutoAssign, etc. | |
| with_score_factors = True | |
| assert len(cls_scores) == len(score_factors) | |
| num_levels = len(cls_scores) | |
| featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] | |
| mlvl_priors = self.prior_generator.grid_priors( | |
| featmap_sizes, | |
| dtype=cls_scores[0].dtype, | |
| device=cls_scores[0].device, | |
| with_stride=True) | |
| result_list = [] | |
| for img_id in range(len(batch_img_metas)): | |
| img_meta = batch_img_metas[img_id] | |
| cls_score_list = select_single_mlvl( | |
| cls_scores, img_id, detach=True) | |
| bbox_pred_list = select_single_mlvl( | |
| bbox_preds, img_id, detach=True) | |
| kernel_pred_list = select_single_mlvl( | |
| kernel_preds, img_id, detach=True) | |
| if with_score_factors: | |
| score_factor_list = select_single_mlvl( | |
| score_factors, img_id, detach=True) | |
| else: | |
| score_factor_list = [None for _ in range(num_levels)] | |
| results = self._predict_by_feat_single( | |
| cls_score_list=cls_score_list, | |
| bbox_pred_list=bbox_pred_list, | |
| kernel_pred_list=kernel_pred_list, | |
| mask_feat=mask_feat[img_id], | |
| score_factor_list=score_factor_list, | |
| mlvl_priors=mlvl_priors, | |
| img_meta=img_meta, | |
| cfg=cfg, | |
| rescale=rescale, | |
| with_nms=with_nms) | |
| result_list.append(results) | |
| return result_list | |
| def _predict_by_feat_single(self, | |
| cls_score_list: List[Tensor], | |
| bbox_pred_list: List[Tensor], | |
| kernel_pred_list: List[Tensor], | |
| mask_feat: Tensor, | |
| score_factor_list: List[Tensor], | |
| mlvl_priors: List[Tensor], | |
| img_meta: dict, | |
| cfg: ConfigType, | |
| rescale: bool = False, | |
| with_nms: bool = True) -> InstanceData: | |
| """Transform a single image's features extracted from the head into | |
| bbox and mask results. | |
| Args: | |
| cls_score_list (list[Tensor]): Box scores from all scale | |
| levels of a single image, each item has shape | |
| (num_priors * num_classes, H, W). | |
| bbox_pred_list (list[Tensor]): Box energies / deltas from | |
| all scale levels of a single image, each item has shape | |
| (num_priors * 4, H, W). | |
| kernel_preds (list[Tensor]): Kernel predictions of dynamic | |
| convs for all scale levels of a single image, each is a | |
| 4D-tensor, has shape (num_params, H, W). | |
| mask_feat (Tensor): Mask prototype features of a single image | |
| extracted from the mask head, has shape (num_prototypes, H, W). | |
| score_factor_list (list[Tensor]): Score factor from all scale | |
| levels of a single image, each item has shape | |
| (num_priors * 1, H, W). | |
| mlvl_priors (list[Tensor]): Each element in the list is | |
| the priors of a single level in feature pyramid. In all | |
| anchor-based methods, it has shape (num_priors, 4). In | |
| all anchor-free methods, it has shape (num_priors, 2) | |
| when `with_stride=True`, otherwise it still has shape | |
| (num_priors, 4). | |
| img_meta (dict): Image meta info. | |
| cfg (mmengine.Config): Test / postprocessing configuration, | |
| if None, test_cfg would be used. | |
| rescale (bool): If True, return boxes in original image space. | |
| Defaults to False. | |
| with_nms (bool): If True, do nms before return boxes. | |
| Defaults to True. | |
| Returns: | |
| :obj:`InstanceData`: Detection results of each image | |
| after the post process. | |
| Each item usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape | |
| (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), | |
| the last dimension 4 arrange as (x1, y1, x2, y2). | |
| - masks (Tensor): Has a shape (num_instances, h, w). | |
| """ | |
| if score_factor_list[0] is None: | |
| # e.g. Retina, FreeAnchor, etc. | |
| with_score_factors = False | |
| else: | |
| # e.g. FCOS, PAA, ATSS, etc. | |
| with_score_factors = True | |
| cfg = self.test_cfg if cfg is None else cfg | |
| cfg = copy.deepcopy(cfg) | |
| img_shape = img_meta['img_shape'] | |
| nms_pre = cfg.get('nms_pre', -1) | |
| mlvl_bbox_preds = [] | |
| mlvl_kernels = [] | |
| mlvl_valid_priors = [] | |
| mlvl_scores = [] | |
| mlvl_labels = [] | |
| if with_score_factors: | |
| mlvl_score_factors = [] | |
| else: | |
| mlvl_score_factors = None | |
| for level_idx, (cls_score, bbox_pred, kernel_pred, | |
| score_factor, priors) in \ | |
| enumerate(zip(cls_score_list, bbox_pred_list, kernel_pred_list, | |
| score_factor_list, mlvl_priors)): | |
| assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
| dim = self.bbox_coder.encode_size | |
| bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, dim) | |
| if with_score_factors: | |
| score_factor = score_factor.permute(1, 2, | |
| 0).reshape(-1).sigmoid() | |
| cls_score = cls_score.permute(1, 2, | |
| 0).reshape(-1, self.cls_out_channels) | |
| kernel_pred = kernel_pred.permute(1, 2, 0).reshape( | |
| -1, self.num_gen_params) | |
| if self.use_sigmoid_cls: | |
| scores = cls_score.sigmoid() | |
| else: | |
| # remind that we set FG labels to [0, num_class-1] | |
| # since mmdet v2.0 | |
| # BG cat_id: num_class | |
| scores = cls_score.softmax(-1)[:, :-1] | |
| # After https://github.com/open-mmlab/mmdetection/pull/6268/, | |
| # this operation keeps fewer bboxes under the same `nms_pre`. | |
| # There is no difference in performance for most models. If you | |
| # find a slight drop in performance, you can set a larger | |
| # `nms_pre` than before. | |
| score_thr = cfg.get('score_thr', 0) | |
| results = filter_scores_and_topk( | |
| scores, score_thr, nms_pre, | |
| dict( | |
| bbox_pred=bbox_pred, | |
| priors=priors, | |
| kernel_pred=kernel_pred)) | |
| scores, labels, keep_idxs, filtered_results = results | |
| bbox_pred = filtered_results['bbox_pred'] | |
| priors = filtered_results['priors'] | |
| kernel_pred = filtered_results['kernel_pred'] | |
| if with_score_factors: | |
| score_factor = score_factor[keep_idxs] | |
| mlvl_bbox_preds.append(bbox_pred) | |
| mlvl_valid_priors.append(priors) | |
| mlvl_scores.append(scores) | |
| mlvl_labels.append(labels) | |
| mlvl_kernels.append(kernel_pred) | |
| if with_score_factors: | |
| mlvl_score_factors.append(score_factor) | |
| bbox_pred = torch.cat(mlvl_bbox_preds) | |
| priors = cat_boxes(mlvl_valid_priors) | |
| bboxes = self.bbox_coder.decode( | |
| priors[..., :2], bbox_pred, max_shape=img_shape) | |
| results = InstanceData() | |
| results.bboxes = bboxes | |
| results.priors = priors | |
| results.scores = torch.cat(mlvl_scores) | |
| results.labels = torch.cat(mlvl_labels) | |
| results.kernels = torch.cat(mlvl_kernels) | |
| if with_score_factors: | |
| results.score_factors = torch.cat(mlvl_score_factors) | |
| return self._bbox_mask_post_process( | |
| results=results, | |
| mask_feat=mask_feat, | |
| cfg=cfg, | |
| rescale=rescale, | |
| with_nms=with_nms, | |
| img_meta=img_meta) | |
| def _bbox_mask_post_process( | |
| self, | |
| results: InstanceData, | |
| mask_feat, | |
| cfg: ConfigType, | |
| rescale: bool = False, | |
| with_nms: bool = True, | |
| img_meta: Optional[dict] = None) -> InstanceData: | |
| """bbox and mask post-processing method. | |
| The boxes would be rescaled to the original image scale and do | |
| the nms operation. Usually `with_nms` is False is used for aug test. | |
| Args: | |
| results (:obj:`InstaceData`): Detection instance results, | |
| each item has shape (num_bboxes, ). | |
| cfg (ConfigDict): Test / postprocessing configuration, | |
| if None, test_cfg would be used. | |
| rescale (bool): If True, return boxes in original image space. | |
| Default to False. | |
| with_nms (bool): If True, do nms before return boxes. | |
| Default to True. | |
| img_meta (dict, optional): Image meta info. Defaults to None. | |
| Returns: | |
| :obj:`InstanceData`: Detection results of each image | |
| after the post process. | |
| Each item usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape | |
| (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), | |
| the last dimension 4 arrange as (x1, y1, x2, y2). | |
| - masks (Tensor): Has a shape (num_instances, h, w). | |
| """ | |
| stride = self.prior_generator.strides[0][0] | |
| if rescale: | |
| assert img_meta.get('scale_factor') is not None | |
| scale_factor = [1 / s for s in img_meta['scale_factor']] | |
| results.bboxes = scale_boxes(results.bboxes, scale_factor) | |
| if hasattr(results, 'score_factors'): | |
| # TODO: Add sqrt operation in order to be consistent with | |
| # the paper. | |
| score_factors = results.pop('score_factors') | |
| results.scores = results.scores * score_factors | |
| # filter small size bboxes | |
| if cfg.get('min_bbox_size', -1) >= 0: | |
| w, h = get_box_wh(results.bboxes) | |
| valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size) | |
| if not valid_mask.all(): | |
| results = results[valid_mask] | |
| # TODO: deal with `with_nms` and `nms_cfg=None` in test_cfg | |
| assert with_nms, 'with_nms must be True for RTMDet-Ins' | |
| if results.bboxes.numel() > 0: | |
| bboxes = get_box_tensor(results.bboxes) | |
| det_bboxes, keep_idxs = batched_nms(bboxes, results.scores, | |
| results.labels, cfg.nms) | |
| results = results[keep_idxs] | |
| # some nms would reweight the score, such as softnms | |
| results.scores = det_bboxes[:, -1] | |
| results = results[:cfg.max_per_img] | |
| # process masks | |
| mask_logits = self._mask_predict_by_feat_single( | |
| mask_feat, results.kernels, results.priors) | |
| mask_logits = F.interpolate( | |
| mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear') | |
| if rescale: | |
| ori_h, ori_w = img_meta['ori_shape'][:2] | |
| mask_logits = F.interpolate( | |
| mask_logits, | |
| size=[ | |
| math.ceil(mask_logits.shape[-2] * scale_factor[0]), | |
| math.ceil(mask_logits.shape[-1] * scale_factor[1]) | |
| ], | |
| mode='bilinear', | |
| align_corners=False)[..., :ori_h, :ori_w] | |
| masks = mask_logits.sigmoid().squeeze(0) | |
| masks = masks > cfg.mask_thr_binary | |
| results.masks = masks | |
| else: | |
| h, w = img_meta['ori_shape'][:2] if rescale else img_meta[ | |
| 'img_shape'][:2] | |
| results.masks = torch.zeros( | |
| size=(results.bboxes.shape[0], h, w), | |
| dtype=torch.bool, | |
| device=results.bboxes.device) | |
| return results | |
| def parse_dynamic_params(self, flatten_kernels: Tensor) -> tuple: | |
| """split kernel head prediction to conv weight and bias.""" | |
| n_inst = flatten_kernels.size(0) | |
| n_layers = len(self.weight_nums) | |
| params_splits = list( | |
| torch.split_with_sizes( | |
| flatten_kernels, self.weight_nums + self.bias_nums, dim=1)) | |
| weight_splits = params_splits[:n_layers] | |
| bias_splits = params_splits[n_layers:] | |
| for i in range(n_layers): | |
| if i < n_layers - 1: | |
| weight_splits[i] = weight_splits[i].reshape( | |
| n_inst * self.dyconv_channels, -1, 1, 1) | |
| bias_splits[i] = bias_splits[i].reshape(n_inst * | |
| self.dyconv_channels) | |
| else: | |
| weight_splits[i] = weight_splits[i].reshape(n_inst, -1, 1, 1) | |
| bias_splits[i] = bias_splits[i].reshape(n_inst) | |
| return weight_splits, bias_splits | |
| def _mask_predict_by_feat_single(self, mask_feat: Tensor, kernels: Tensor, | |
| priors: Tensor) -> Tensor: | |
| """Generate mask logits from mask features with dynamic convs. | |
| Args: | |
| mask_feat (Tensor): Mask prototype features. | |
| Has shape (num_prototypes, H, W). | |
| kernels (Tensor): Kernel parameters for each instance. | |
| Has shape (num_instance, num_params) | |
| priors (Tensor): Center priors for each instance. | |
| Has shape (num_instance, 4). | |
| Returns: | |
| Tensor: Instance segmentation masks for each instance. | |
| Has shape (num_instance, H, W). | |
| """ | |
| num_inst = priors.shape[0] | |
| h, w = mask_feat.size()[-2:] | |
| if num_inst < 1: | |
| return torch.empty( | |
| size=(num_inst, h, w), | |
| dtype=mask_feat.dtype, | |
| device=mask_feat.device) | |
| if len(mask_feat.shape) < 4: | |
| mask_feat.unsqueeze(0) | |
| coord = self.prior_generator.single_level_grid_priors( | |
| (h, w), level_idx=0, device=mask_feat.device).reshape(1, -1, 2) | |
| num_inst = priors.shape[0] | |
| points = priors[:, :2].reshape(-1, 1, 2) | |
| strides = priors[:, 2:].reshape(-1, 1, 2) | |
| relative_coord = (points - coord).permute(0, 2, 1) / ( | |
| strides[..., 0].reshape(-1, 1, 1) * 8) | |
| relative_coord = relative_coord.reshape(num_inst, 2, h, w) | |
| mask_feat = torch.cat( | |
| [relative_coord, | |
| mask_feat.repeat(num_inst, 1, 1, 1)], dim=1) | |
| weights, biases = self.parse_dynamic_params(kernels) | |
| n_layers = len(weights) | |
| x = mask_feat.reshape(1, -1, h, w) | |
| for i, (weight, bias) in enumerate(zip(weights, biases)): | |
| x = F.conv2d( | |
| x, weight, bias=bias, stride=1, padding=0, groups=num_inst) | |
| if i < n_layers - 1: | |
| x = F.relu(x) | |
| x = x.reshape(num_inst, h, w) | |
| return x | |
| def loss_mask_by_feat(self, mask_feats: Tensor, flatten_kernels: Tensor, | |
| sampling_results_list: list, | |
| batch_gt_instances: InstanceList) -> Tensor: | |
| """Compute instance segmentation loss. | |
| Args: | |
| mask_feats (list[Tensor]): Mask prototype features extracted from | |
| the mask head. Has shape (N, num_prototypes, H, W) | |
| flatten_kernels (list[Tensor]): Kernels of the dynamic conv layers. | |
| Has shape (N, num_instances, num_params) | |
| sampling_results_list (list[:obj:`SamplingResults`]) Batch of | |
| assignment results. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| Returns: | |
| Tensor: The mask loss tensor. | |
| """ | |
| batch_pos_mask_logits = [] | |
| pos_gt_masks = [] | |
| for idx, (mask_feat, kernels, sampling_results, | |
| gt_instances) in enumerate( | |
| zip(mask_feats, flatten_kernels, sampling_results_list, | |
| batch_gt_instances)): | |
| pos_priors = sampling_results.pos_priors | |
| pos_inds = sampling_results.pos_inds | |
| pos_kernels = kernels[pos_inds] # n_pos, num_gen_params | |
| pos_mask_logits = self._mask_predict_by_feat_single( | |
| mask_feat, pos_kernels, pos_priors) | |
| if gt_instances.masks.numel() == 0: | |
| gt_masks = torch.empty_like(gt_instances.masks) | |
| else: | |
| gt_masks = gt_instances.masks[ | |
| sampling_results.pos_assigned_gt_inds, :] | |
| batch_pos_mask_logits.append(pos_mask_logits) | |
| pos_gt_masks.append(gt_masks) | |
| pos_gt_masks = torch.cat(pos_gt_masks, 0) | |
| batch_pos_mask_logits = torch.cat(batch_pos_mask_logits, 0) | |
| # avg_factor | |
| num_pos = batch_pos_mask_logits.shape[0] | |
| num_pos = reduce_mean(mask_feats.new_tensor([num_pos | |
| ])).clamp_(min=1).item() | |
| if batch_pos_mask_logits.shape[0] == 0: | |
| return mask_feats.sum() * 0 | |
| scale = self.prior_generator.strides[0][0] // self.mask_loss_stride | |
| # upsample pred masks | |
| batch_pos_mask_logits = F.interpolate( | |
| batch_pos_mask_logits.unsqueeze(0), | |
| scale_factor=scale, | |
| mode='bilinear', | |
| align_corners=False).squeeze(0) | |
| # downsample gt masks | |
| pos_gt_masks = pos_gt_masks[:, self.mask_loss_stride // | |
| 2::self.mask_loss_stride, | |
| self.mask_loss_stride // | |
| 2::self.mask_loss_stride] | |
| loss_mask = self.loss_mask( | |
| batch_pos_mask_logits, | |
| pos_gt_masks, | |
| weight=None, | |
| avg_factor=num_pos) | |
| return loss_mask | |
| def loss_by_feat(self, | |
| cls_scores: List[Tensor], | |
| bbox_preds: List[Tensor], | |
| kernel_preds: List[Tensor], | |
| mask_feat: Tensor, | |
| batch_gt_instances: InstanceList, | |
| batch_img_metas: List[dict], | |
| batch_gt_instances_ignore: OptInstanceList = None): | |
| """Compute losses of the head. | |
| Args: | |
| cls_scores (list[Tensor]): Box scores for each scale level | |
| Has shape (N, num_anchors * num_classes, H, W) | |
| bbox_preds (list[Tensor]): Decoded box for each scale | |
| level with shape (N, num_anchors * 4, H, W) in | |
| [tl_x, tl_y, br_x, br_y] format. | |
| batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
| gt_instance. It usually includes ``bboxes`` and ``labels`` | |
| attributes. | |
| batch_img_metas (list[dict]): Meta information of each image, e.g., | |
| image size, scaling factor, etc. | |
| batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
| Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
| data that is ignored during training and testing. | |
| Defaults to None. | |
| Returns: | |
| dict[str, Tensor]: A dictionary of loss components. | |
| """ | |
| num_imgs = len(batch_img_metas) | |
| featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
| assert len(featmap_sizes) == self.prior_generator.num_levels | |
| device = cls_scores[0].device | |
| anchor_list, valid_flag_list = self.get_anchors( | |
| featmap_sizes, batch_img_metas, device=device) | |
| flatten_cls_scores = torch.cat([ | |
| cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
| self.cls_out_channels) | |
| for cls_score in cls_scores | |
| ], 1) | |
| flatten_kernels = torch.cat([ | |
| kernel_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, | |
| self.num_gen_params) | |
| for kernel_pred in kernel_preds | |
| ], 1) | |
| decoded_bboxes = [] | |
| for anchor, bbox_pred in zip(anchor_list[0], bbox_preds): | |
| anchor = anchor.reshape(-1, 4) | |
| bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) | |
| bbox_pred = distance2bbox(anchor, bbox_pred) | |
| decoded_bboxes.append(bbox_pred) | |
| flatten_bboxes = torch.cat(decoded_bboxes, 1) | |
| for gt_instances in batch_gt_instances: | |
| gt_instances.masks = gt_instances.masks.to_tensor( | |
| dtype=torch.bool, device=device) | |
| cls_reg_targets = self.get_targets( | |
| flatten_cls_scores, | |
| flatten_bboxes, | |
| anchor_list, | |
| valid_flag_list, | |
| batch_gt_instances, | |
| batch_img_metas, | |
| batch_gt_instances_ignore=batch_gt_instances_ignore) | |
| (anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
| assign_metrics_list, sampling_results_list) = cls_reg_targets | |
| losses_cls, losses_bbox,\ | |
| cls_avg_factors, bbox_avg_factors = multi_apply( | |
| self.loss_by_feat_single, | |
| cls_scores, | |
| decoded_bboxes, | |
| labels_list, | |
| label_weights_list, | |
| bbox_targets_list, | |
| assign_metrics_list, | |
| self.prior_generator.strides) | |
| cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item() | |
| losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls)) | |
| bbox_avg_factor = reduce_mean( | |
| sum(bbox_avg_factors)).clamp_(min=1).item() | |
| losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) | |
| loss_mask = self.loss_mask_by_feat(mask_feat, flatten_kernels, | |
| sampling_results_list, | |
| batch_gt_instances) | |
| loss = dict( | |
| loss_cls=losses_cls, loss_bbox=losses_bbox, loss_mask=loss_mask) | |
| return loss | |
| class MaskFeatModule(BaseModule): | |
| """Mask feature head used in RTMDet-Ins. | |
| Args: | |
| in_channels (int): Number of channels in the input feature map. | |
| feat_channels (int): Number of hidden channels of the mask feature | |
| map branch. | |
| num_levels (int): The starting feature map level from RPN that | |
| will be used to predict the mask feature map. | |
| num_prototypes (int): Number of output channel of the mask feature | |
| map branch. This is the channel count of the mask | |
| feature map that to be dynamically convolved with the predicted | |
| kernel. | |
| stacked_convs (int): Number of convs in mask feature branch. | |
| act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. | |
| Default: dict(type='ReLU', inplace=True) | |
| norm_cfg (dict): Config dict for normalization layer. Default: None. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| feat_channels: int = 256, | |
| stacked_convs: int = 4, | |
| num_levels: int = 3, | |
| num_prototypes: int = 8, | |
| act_cfg: ConfigType = dict(type='ReLU', inplace=True), | |
| norm_cfg: ConfigType = dict(type='BN') | |
| ) -> None: | |
| super().__init__(init_cfg=None) | |
| self.num_levels = num_levels | |
| self.fusion_conv = nn.Conv2d(num_levels * in_channels, in_channels, 1) | |
| convs = [] | |
| for i in range(stacked_convs): | |
| in_c = in_channels if i == 0 else feat_channels | |
| convs.append( | |
| ConvModule( | |
| in_c, | |
| feat_channels, | |
| 3, | |
| padding=1, | |
| act_cfg=act_cfg, | |
| norm_cfg=norm_cfg)) | |
| self.stacked_convs = nn.Sequential(*convs) | |
| self.projection = nn.Conv2d( | |
| feat_channels, num_prototypes, kernel_size=1) | |
| def forward(self, features: Tuple[Tensor, ...]) -> Tensor: | |
| # multi-level feature fusion | |
| fusion_feats = [features[0]] | |
| size = features[0].shape[-2:] | |
| for i in range(1, self.num_levels): | |
| f = F.interpolate(features[i], size=size, mode='bilinear') | |
| fusion_feats.append(f) | |
| fusion_feats = torch.cat(fusion_feats, dim=1) | |
| fusion_feats = self.fusion_conv(fusion_feats) | |
| # pred mask feats | |
| mask_features = self.stacked_convs(fusion_feats) | |
| mask_features = self.projection(mask_features) | |
| return mask_features | |
| class RTMDetInsSepBNHead(RTMDetInsHead): | |
| """Detection Head of RTMDet-Ins with sep-bn layers. | |
| Args: | |
| num_classes (int): Number of categories excluding the background | |
| category. | |
| in_channels (int): Number of channels in the input feature map. | |
| share_conv (bool): Whether to share conv layers between stages. | |
| Defaults to True. | |
| norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization | |
| layer. Defaults to dict(type='BN'). | |
| act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer. | |
| Defaults to dict(type='SiLU', inplace=True). | |
| pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1. | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| in_channels: int, | |
| share_conv: bool = True, | |
| with_objectness: bool = False, | |
| norm_cfg: ConfigType = dict(type='BN', requires_grad=True), | |
| act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
| pred_kernel_size: int = 1, | |
| **kwargs) -> None: | |
| self.share_conv = share_conv | |
| super().__init__( | |
| num_classes, | |
| in_channels, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| pred_kernel_size=pred_kernel_size, | |
| with_objectness=with_objectness, | |
| **kwargs) | |
| def _init_layers(self) -> None: | |
| """Initialize layers of the head.""" | |
| self.cls_convs = nn.ModuleList() | |
| self.reg_convs = nn.ModuleList() | |
| self.kernel_convs = nn.ModuleList() | |
| self.rtm_cls = nn.ModuleList() | |
| self.rtm_reg = nn.ModuleList() | |
| self.rtm_kernel = nn.ModuleList() | |
| self.rtm_obj = nn.ModuleList() | |
| # calculate num dynamic parameters | |
| weight_nums, bias_nums = [], [] | |
| for i in range(self.num_dyconvs): | |
| if i == 0: | |
| weight_nums.append( | |
| (self.num_prototypes + 2) * self.dyconv_channels) | |
| bias_nums.append(self.dyconv_channels) | |
| elif i == self.num_dyconvs - 1: | |
| weight_nums.append(self.dyconv_channels) | |
| bias_nums.append(1) | |
| else: | |
| weight_nums.append(self.dyconv_channels * self.dyconv_channels) | |
| bias_nums.append(self.dyconv_channels) | |
| self.weight_nums = weight_nums | |
| self.bias_nums = bias_nums | |
| self.num_gen_params = sum(weight_nums) + sum(bias_nums) | |
| pred_pad_size = self.pred_kernel_size // 2 | |
| for n in range(len(self.prior_generator.strides)): | |
| cls_convs = nn.ModuleList() | |
| reg_convs = nn.ModuleList() | |
| kernel_convs = nn.ModuleList() | |
| for i in range(self.stacked_convs): | |
| chn = self.in_channels if i == 0 else self.feat_channels | |
| cls_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| reg_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| kernel_convs.append( | |
| ConvModule( | |
| chn, | |
| self.feat_channels, | |
| 3, | |
| stride=1, | |
| padding=1, | |
| conv_cfg=self.conv_cfg, | |
| norm_cfg=self.norm_cfg, | |
| act_cfg=self.act_cfg)) | |
| self.cls_convs.append(cls_convs) | |
| self.reg_convs.append(cls_convs) | |
| self.kernel_convs.append(kernel_convs) | |
| self.rtm_cls.append( | |
| nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * self.cls_out_channels, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size)) | |
| self.rtm_reg.append( | |
| nn.Conv2d( | |
| self.feat_channels, | |
| self.num_base_priors * 4, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size)) | |
| self.rtm_kernel.append( | |
| nn.Conv2d( | |
| self.feat_channels, | |
| self.num_gen_params, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size)) | |
| if self.with_objectness: | |
| self.rtm_obj.append( | |
| nn.Conv2d( | |
| self.feat_channels, | |
| 1, | |
| self.pred_kernel_size, | |
| padding=pred_pad_size)) | |
| if self.share_conv: | |
| for n in range(len(self.prior_generator.strides)): | |
| for i in range(self.stacked_convs): | |
| self.cls_convs[n][i].conv = self.cls_convs[0][i].conv | |
| self.reg_convs[n][i].conv = self.reg_convs[0][i].conv | |
| self.mask_head = MaskFeatModule( | |
| in_channels=self.in_channels, | |
| feat_channels=self.feat_channels, | |
| stacked_convs=4, | |
| num_levels=len(self.prior_generator.strides), | |
| num_prototypes=self.num_prototypes, | |
| act_cfg=self.act_cfg, | |
| norm_cfg=self.norm_cfg) | |
| def init_weights(self) -> None: | |
| """Initialize weights of the head.""" | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| normal_init(m, mean=0, std=0.01) | |
| if is_norm(m): | |
| constant_init(m, 1) | |
| bias_cls = bias_init_with_prob(0.01) | |
| for rtm_cls, rtm_reg, rtm_kernel in zip(self.rtm_cls, self.rtm_reg, | |
| self.rtm_kernel): | |
| normal_init(rtm_cls, std=0.01, bias=bias_cls) | |
| normal_init(rtm_reg, std=0.01, bias=1) | |
| if self.with_objectness: | |
| for rtm_obj in self.rtm_obj: | |
| normal_init(rtm_obj, std=0.01, bias=bias_cls) | |
| def forward(self, feats: Tuple[Tensor, ...]) -> tuple: | |
| """Forward features from the upstream network. | |
| Args: | |
| feats (tuple[Tensor]): Features from the upstream network, each is | |
| a 4D-tensor. | |
| Returns: | |
| tuple: Usually a tuple of classification scores and bbox prediction | |
| - cls_scores (list[Tensor]): Classification scores for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * num_classes. | |
| - bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_base_priors * 4. | |
| - kernel_preds (list[Tensor]): Dynamic conv kernels for all scale | |
| levels, each is a 4D-tensor, the channels number is | |
| num_gen_params. | |
| - mask_feat (Tensor): Output feature of the mask head. Each is a | |
| 4D-tensor, the channels number is num_prototypes. | |
| """ | |
| mask_feat = self.mask_head(feats) | |
| cls_scores = [] | |
| bbox_preds = [] | |
| kernel_preds = [] | |
| for idx, (x, stride) in enumerate( | |
| zip(feats, self.prior_generator.strides)): | |
| cls_feat = x | |
| reg_feat = x | |
| kernel_feat = x | |
| for cls_layer in self.cls_convs[idx]: | |
| cls_feat = cls_layer(cls_feat) | |
| cls_score = self.rtm_cls[idx](cls_feat) | |
| for kernel_layer in self.kernel_convs[idx]: | |
| kernel_feat = kernel_layer(kernel_feat) | |
| kernel_pred = self.rtm_kernel[idx](kernel_feat) | |
| for reg_layer in self.reg_convs[idx]: | |
| reg_feat = reg_layer(reg_feat) | |
| if self.with_objectness: | |
| objectness = self.rtm_obj[idx](reg_feat) | |
| cls_score = inverse_sigmoid( | |
| sigmoid_geometric_mean(cls_score, objectness)) | |
| reg_dist = F.relu(self.rtm_reg[idx](reg_feat)) * stride[0] | |
| cls_scores.append(cls_score) | |
| bbox_preds.append(reg_dist) | |
| kernel_preds.append(kernel_pred) | |
| return tuple(cls_scores), tuple(bbox_preds), tuple( | |
| kernel_preds), mask_feat | |