Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,10 @@ import torch
|
|
| 11 |
import numpy as np
|
| 12 |
import networkx as nx
|
| 13 |
from collections import Counter
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
@dataclass
|
| 16 |
class ChatMessage:
|
|
@@ -27,13 +31,15 @@ class XylariaChat:
|
|
| 27 |
raise ValueError("HuggingFace token not found in environment variables")
|
| 28 |
|
| 29 |
self.client = InferenceClient(
|
| 30 |
-
model="Qwen/
|
| 31 |
-
|
| 32 |
)
|
| 33 |
|
| 34 |
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
| 35 |
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
| 36 |
|
|
|
|
|
|
|
| 37 |
self.conversation_history = []
|
| 38 |
self.persistent_memory = []
|
| 39 |
self.memory_embeddings = None
|
|
@@ -47,7 +53,7 @@ class XylariaChat:
|
|
| 47 |
"bias_detection": 0.0,
|
| 48 |
"strategy_adjustment": ""
|
| 49 |
}
|
| 50 |
-
|
| 51 |
self.internal_state = {
|
| 52 |
"emotions": {
|
| 53 |
"valence": 0.5,
|
|
@@ -76,7 +82,7 @@ class XylariaChat:
|
|
| 76 |
]
|
| 77 |
|
| 78 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
| 79 |
-
|
| 80 |
self.causal_rules_db = {
|
| 81 |
"rain": ["wet roads", "flooding"],
|
| 82 |
"fire": ["heat", "smoke"],
|
|
@@ -90,6 +96,11 @@ class XylariaChat:
|
|
| 90 |
"democracy": "government by the people",
|
| 91 |
"photosynthesis": "process used by plants to convert light to energy"
|
| 92 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
| 95 |
for emotion, delta in emotion_deltas.items():
|
|
@@ -117,7 +128,7 @@ class XylariaChat:
|
|
| 117 |
|
| 118 |
def update_belief_system(self, statement, belief_score):
|
| 119 |
self.belief_system[statement] = belief_score
|
| 120 |
-
|
| 121 |
def dynamic_belief_update(self, user_message):
|
| 122 |
sentences = [s.strip() for s in user_message.split('.') if s.strip()]
|
| 123 |
sentence_counts = Counter(sentences)
|
|
@@ -223,7 +234,7 @@ class XylariaChat:
|
|
| 223 |
return "Current strategy is effective. Continue with the current approach."
|
| 224 |
else:
|
| 225 |
return " ".join(adjustments)
|
| 226 |
-
|
| 227 |
def introspect(self):
|
| 228 |
introspection_report = "Introspection Report:\n"
|
| 229 |
introspection_report += f" Current Emotional State:\n"
|
|
@@ -273,7 +284,7 @@ class XylariaChat:
|
|
| 273 |
response = "I'm feeling quite energized and ready to assist! " + response
|
| 274 |
else:
|
| 275 |
response = "I'm in a good mood and happy to help. " + response
|
| 276 |
-
|
| 277 |
if curiosity > 0.7:
|
| 278 |
response += " I'm very curious about this topic, could you tell me more?"
|
| 279 |
if frustration > 0.5:
|
|
@@ -299,7 +310,7 @@ class XylariaChat:
|
|
| 299 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
| 300 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
| 301 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
| 302 |
-
|
| 303 |
if "learn more" in feedback_lower:
|
| 304 |
for goal in self.goals:
|
| 305 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
|
@@ -310,7 +321,7 @@ class XylariaChat:
|
|
| 310 |
if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
|
| 311 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
| 312 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
| 313 |
-
|
| 314 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
| 315 |
for goal in self.goals:
|
| 316 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
|
@@ -387,8 +398,8 @@ class XylariaChat:
|
|
| 387 |
|
| 388 |
try:
|
| 389 |
self.client = InferenceClient(
|
| 390 |
-
model="Qwen/
|
| 391 |
-
|
| 392 |
)
|
| 393 |
except Exception as e:
|
| 394 |
print(f"Error resetting API client: {e}")
|
|
@@ -422,6 +433,13 @@ class XylariaChat:
|
|
| 422 |
except Exception as e:
|
| 423 |
return f"Error processing image: {str(e)}"
|
| 424 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
def perform_math_ocr(self, image_path):
|
| 426 |
try:
|
| 427 |
img = Image.open(image_path)
|
|
@@ -429,9 +447,58 @@ class XylariaChat:
|
|
| 429 |
return text.strip()
|
| 430 |
except Exception as e:
|
| 431 |
return f"Error during Math OCR: {e}"
|
| 432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
def get_response(self, user_input, image=None):
|
| 434 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
messages = []
|
| 436 |
|
| 437 |
messages.append(ChatMessage(
|
|
@@ -458,7 +525,7 @@ class XylariaChat:
|
|
| 458 |
role="user",
|
| 459 |
content=user_input
|
| 460 |
).to_dict())
|
| 461 |
-
|
| 462 |
entities = []
|
| 463 |
relationships = []
|
| 464 |
|
|
@@ -468,19 +535,19 @@ class XylariaChat:
|
|
| 468 |
extracted_relationships = self.extract_relationships(message['content'])
|
| 469 |
entities.extend(extracted_entities)
|
| 470 |
relationships.extend(extracted_relationships)
|
| 471 |
-
|
| 472 |
self.update_knowledge_graph(entities, relationships)
|
| 473 |
self.run_metacognitive_layer()
|
| 474 |
-
|
| 475 |
for message in messages:
|
| 476 |
if message['role'] == 'user':
|
| 477 |
self.dynamic_belief_update(message['content'])
|
| 478 |
-
|
| 479 |
for cause, effects in self.causal_rules_db.items():
|
| 480 |
if any(cause in msg['content'].lower() for msg in messages if msg['role'] == 'user') and any(
|
| 481 |
effect in msg['content'].lower() for msg in messages for effect in effects):
|
| 482 |
self.store_information("Causal Inference", f"It seems {cause} might be related to {', '.join(effects)}.")
|
| 483 |
-
|
| 484 |
for concept, generalization in self.concept_generalizations.items():
|
| 485 |
if any(concept in msg['content'].lower() for msg in messages if msg['role'] == 'user'):
|
| 486 |
self.store_information("Inferred Knowledge", f"This reminds me of a general principle: {generalization}.")
|
|
@@ -488,28 +555,54 @@ class XylariaChat:
|
|
| 488 |
if self.internal_state["emotions"]["curiosity"] > 0.8 and any("?" in msg['content'] for msg in messages if msg['role'] == 'user'):
|
| 489 |
print("Simulating external knowledge seeking...")
|
| 490 |
self.store_information("External Knowledge", "This is a placeholder for external information I would have found")
|
| 491 |
-
|
| 492 |
self.store_information("User Input", user_input)
|
| 493 |
|
| 494 |
input_tokens = sum(len(msg['content'].split()) for msg in messages)
|
| 495 |
max_new_tokens = 16384 - input_tokens - 50
|
| 496 |
|
| 497 |
max_new_tokens = min(max_new_tokens, 10020)
|
| 498 |
-
|
| 499 |
-
stream = self.client.chat_completion(
|
| 500 |
-
messages=messages,
|
| 501 |
-
model="Qwen/QwQ-32B-Preview",
|
| 502 |
-
temperature=0.7,
|
| 503 |
-
max_tokens=max_new_tokens,
|
| 504 |
-
top_p=0.9,
|
| 505 |
-
stream=True
|
| 506 |
-
)
|
| 507 |
|
| 508 |
-
|
| 509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
except Exception as e:
|
| 511 |
print(f"Detailed error in get_response: {e}")
|
| 512 |
-
return f"Error generating response: {str(e)}"
|
| 513 |
|
| 514 |
def extract_entities(self, text):
|
| 515 |
words = text.split()
|
|
@@ -526,7 +619,7 @@ class XylariaChat:
|
|
| 526 |
if words[i].istitle() and words[i+2].istitle():
|
| 527 |
relationships.append((words[i], words[i+1], words[i+2]))
|
| 528 |
return relationships
|
| 529 |
-
|
| 530 |
def messages_to_prompt(self, messages):
|
| 531 |
prompt = ""
|
| 532 |
for msg in messages:
|
|
@@ -540,14 +633,165 @@ class XylariaChat:
|
|
| 540 |
return prompt
|
| 541 |
|
| 542 |
def create_interface(self):
|
| 543 |
-
|
| 544 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
ocr_text = ""
|
| 546 |
if math_ocr_image_path:
|
| 547 |
ocr_text = self.perform_math_ocr(math_ocr_image_path)
|
| 548 |
if ocr_text.startswith("Error"):
|
| 549 |
updated_history = chat_history + [[message, ocr_text]]
|
| 550 |
-
yield
|
| 551 |
return
|
| 552 |
else:
|
| 553 |
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
|
|
@@ -556,10 +800,10 @@ class XylariaChat:
|
|
| 556 |
response_stream = self.get_response(message, image_filepath)
|
| 557 |
else:
|
| 558 |
response_stream = self.get_response(message)
|
| 559 |
-
|
| 560 |
if isinstance(response_stream, str):
|
| 561 |
updated_history = chat_history + [[message, response_stream]]
|
| 562 |
-
yield
|
| 563 |
return
|
| 564 |
|
| 565 |
full_response = ""
|
|
@@ -570,13 +814,13 @@ class XylariaChat:
|
|
| 570 |
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
| 571 |
chunk_content = chunk.choices[0].delta.content
|
| 572 |
full_response += chunk_content
|
| 573 |
-
|
| 574 |
updated_history[-1][1] = full_response
|
| 575 |
-
yield
|
| 576 |
except Exception as e:
|
| 577 |
print(f"Streaming error: {e}")
|
| 578 |
updated_history[-1][1] = f"Error during response: {e}"
|
| 579 |
-
yield
|
| 580 |
return
|
| 581 |
|
| 582 |
full_response = self.adjust_response_based_on_state(full_response)
|
|
@@ -609,14 +853,14 @@ class XylariaChat:
|
|
| 609 |
else:
|
| 610 |
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
| 611 |
engagement_delta = 0.05
|
| 612 |
-
|
| 613 |
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
|
| 614 |
emotion_deltas.update({"curiosity": 0.3})
|
| 615 |
cognitive_load_deltas.update({"processing_intensity": 0.1})
|
| 616 |
engagement_delta = 0.2
|
| 617 |
-
|
| 618 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
| 619 |
-
|
| 620 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
| 621 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
| 622 |
|
|
@@ -624,41 +868,145 @@ class XylariaChat:
|
|
| 624 |
self.conversation_history = self.conversation_history[-10:]
|
| 625 |
|
| 626 |
custom_css = """
|
| 627 |
-
@import url('https://fonts.googleapis.com/css2?family=
|
| 628 |
-
|
| 629 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
.chatbot-container .message {
|
| 632 |
-
font-family: '
|
|
|
|
|
|
|
| 633 |
}
|
|
|
|
| 634 |
.gradio-container input,
|
| 635 |
.gradio-container textarea,
|
| 636 |
.gradio-container button {
|
| 637 |
-
font-family: '
|
|
|
|
|
|
|
| 638 |
}
|
|
|
|
| 639 |
.image-container {
|
| 640 |
display: flex;
|
| 641 |
gap: 10px;
|
| 642 |
-
margin-bottom:
|
|
|
|
| 643 |
}
|
|
|
|
| 644 |
.image-upload {
|
| 645 |
-
border:
|
| 646 |
border-radius: 8px;
|
| 647 |
-
padding:
|
| 648 |
-
background-color: #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
}
|
|
|
|
| 650 |
.image-preview {
|
| 651 |
-
max-width:
|
| 652 |
-
max-height:
|
| 653 |
border-radius: 8px;
|
|
|
|
| 654 |
}
|
|
|
|
| 655 |
.clear-button {
|
| 656 |
display: none;
|
| 657 |
}
|
|
|
|
| 658 |
.chatbot-container .message {
|
| 659 |
opacity: 0;
|
| 660 |
animation: fadeIn 0.5s ease-in-out forwards;
|
| 661 |
}
|
|
|
|
| 662 |
@keyframes fadeIn {
|
| 663 |
from {
|
| 664 |
opacity: 0;
|
|
@@ -669,43 +1017,151 @@ class XylariaChat:
|
|
| 669 |
transform: translateY(0);
|
| 670 |
}
|
| 671 |
}
|
|
|
|
| 672 |
.gr-accordion-button {
|
| 673 |
background-color: #f0f0f0 !important;
|
| 674 |
border-radius: 8px !important;
|
| 675 |
-
padding:
|
| 676 |
margin-bottom: 10px !important;
|
| 677 |
transition: all 0.3s ease !important;
|
| 678 |
cursor: pointer !important;
|
|
|
|
|
|
|
| 679 |
}
|
|
|
|
| 680 |
.gr-accordion-button:hover {
|
| 681 |
background-color: #e0e0e0 !important;
|
| 682 |
-
box-shadow: 0px
|
| 683 |
}
|
|
|
|
| 684 |
.gr-accordion-active .gr-accordion-button {
|
| 685 |
background-color: #d0d0d0 !important;
|
| 686 |
-
box-shadow: 0px 4px
|
| 687 |
}
|
|
|
|
| 688 |
.gr-accordion-content {
|
| 689 |
transition: max-height 0.3s ease-in-out !important;
|
| 690 |
overflow: hidden !important;
|
| 691 |
max-height: 0 !important;
|
| 692 |
}
|
|
|
|
| 693 |
.gr-accordion-active .gr-accordion-content {
|
| 694 |
max-height: 500px !important;
|
| 695 |
}
|
|
|
|
| 696 |
.gr-accordion {
|
| 697 |
display: flex;
|
| 698 |
flex-direction: column-reverse;
|
| 699 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 700 |
"""
|
| 701 |
|
| 702 |
-
with gr.Blocks(theme=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 703 |
with gr.Column():
|
| 704 |
chatbot = gr.Chatbot(
|
| 705 |
label="Xylaria 1.5 Senoa",
|
| 706 |
-
height=
|
| 707 |
show_copy_button=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 708 |
)
|
|
|
|
| 709 |
|
| 710 |
with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
|
| 711 |
with gr.Row(elem_classes="image-container"):
|
|
@@ -734,18 +1190,19 @@ class XylariaChat:
|
|
| 734 |
btn = gr.Button("Send", scale=1)
|
| 735 |
|
| 736 |
with gr.Row():
|
| 737 |
-
clear = gr.Button("Clear Conversation")
|
| 738 |
clear_memory = gr.Button("Clear Memory")
|
| 739 |
|
|
|
|
| 740 |
btn.click(
|
| 741 |
fn=streaming_response,
|
| 742 |
-
inputs=[txt, chatbot, img, math_ocr_img],
|
| 743 |
-
outputs=[
|
| 744 |
)
|
| 745 |
txt.submit(
|
| 746 |
fn=streaming_response,
|
| 747 |
-
inputs=[txt, chatbot, img, math_ocr_img],
|
| 748 |
-
outputs=[
|
| 749 |
)
|
| 750 |
|
| 751 |
clear.click(
|
|
|
|
| 11 |
import numpy as np
|
| 12 |
import networkx as nx
|
| 13 |
from collections import Counter
|
| 14 |
+
import asyncio
|
| 15 |
+
import edge_tts
|
| 16 |
+
import speech_recognition as sr
|
| 17 |
+
import random
|
| 18 |
|
| 19 |
@dataclass
|
| 20 |
class ChatMessage:
|
|
|
|
| 31 |
raise ValueError("HuggingFace token not found in environment variables")
|
| 32 |
|
| 33 |
self.client = InferenceClient(
|
| 34 |
+
model="Qwen/Qwen-32B-Preview",
|
| 35 |
+
token=self.hf_token
|
| 36 |
)
|
| 37 |
|
| 38 |
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
| 39 |
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
| 40 |
|
| 41 |
+
self.image_gen_client = InferenceClient("black-forest-labs/FLUX.1-schnell", token=self.hf_token)
|
| 42 |
+
|
| 43 |
self.conversation_history = []
|
| 44 |
self.persistent_memory = []
|
| 45 |
self.memory_embeddings = None
|
|
|
|
| 53 |
"bias_detection": 0.0,
|
| 54 |
"strategy_adjustment": ""
|
| 55 |
}
|
| 56 |
+
|
| 57 |
self.internal_state = {
|
| 58 |
"emotions": {
|
| 59 |
"valence": 0.5,
|
|
|
|
| 82 |
]
|
| 83 |
|
| 84 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
| 85 |
+
|
| 86 |
self.causal_rules_db = {
|
| 87 |
"rain": ["wet roads", "flooding"],
|
| 88 |
"fire": ["heat", "smoke"],
|
|
|
|
| 96 |
"democracy": "government by the people",
|
| 97 |
"photosynthesis": "process used by plants to convert light to energy"
|
| 98 |
}
|
| 99 |
+
|
| 100 |
+
# === Voice Mode Initialization (Start) ===
|
| 101 |
+
self.voice_mode_active = False
|
| 102 |
+
self.selected_voice = "en-US-JennyNeural" # Default voice
|
| 103 |
+
# === Voice Mode Initialization (End) ===
|
| 104 |
|
| 105 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
| 106 |
for emotion, delta in emotion_deltas.items():
|
|
|
|
| 128 |
|
| 129 |
def update_belief_system(self, statement, belief_score):
|
| 130 |
self.belief_system[statement] = belief_score
|
| 131 |
+
|
| 132 |
def dynamic_belief_update(self, user_message):
|
| 133 |
sentences = [s.strip() for s in user_message.split('.') if s.strip()]
|
| 134 |
sentence_counts = Counter(sentences)
|
|
|
|
| 234 |
return "Current strategy is effective. Continue with the current approach."
|
| 235 |
else:
|
| 236 |
return " ".join(adjustments)
|
| 237 |
+
|
| 238 |
def introspect(self):
|
| 239 |
introspection_report = "Introspection Report:\n"
|
| 240 |
introspection_report += f" Current Emotional State:\n"
|
|
|
|
| 284 |
response = "I'm feeling quite energized and ready to assist! " + response
|
| 285 |
else:
|
| 286 |
response = "I'm in a good mood and happy to help. " + response
|
| 287 |
+
|
| 288 |
if curiosity > 0.7:
|
| 289 |
response += " I'm very curious about this topic, could you tell me more?"
|
| 290 |
if frustration > 0.5:
|
|
|
|
| 310 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
| 311 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
| 312 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
| 313 |
+
|
| 314 |
if "learn more" in feedback_lower:
|
| 315 |
for goal in self.goals:
|
| 316 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
|
|
|
| 321 |
if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
|
| 322 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
| 323 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
| 324 |
+
|
| 325 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
| 326 |
for goal in self.goals:
|
| 327 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
|
|
|
| 398 |
|
| 399 |
try:
|
| 400 |
self.client = InferenceClient(
|
| 401 |
+
model="Qwen/Qwen-32B-Preview",
|
| 402 |
+
token=self.hf_token
|
| 403 |
)
|
| 404 |
except Exception as e:
|
| 405 |
print(f"Error resetting API client: {e}")
|
|
|
|
| 433 |
except Exception as e:
|
| 434 |
return f"Error processing image: {str(e)}"
|
| 435 |
|
| 436 |
+
def generate_image(self, prompt):
|
| 437 |
+
try:
|
| 438 |
+
image = self.image_gen_client.text_to_image(prompt)
|
| 439 |
+
return image
|
| 440 |
+
except Exception as e:
|
| 441 |
+
return f"Error generating image: {e}"
|
| 442 |
+
|
| 443 |
def perform_math_ocr(self, image_path):
|
| 444 |
try:
|
| 445 |
img = Image.open(image_path)
|
|
|
|
| 447 |
return text.strip()
|
| 448 |
except Exception as e:
|
| 449 |
return f"Error during Math OCR: {e}"
|
| 450 |
+
|
| 451 |
+
# === Voice Mode Methods (Start) ===
|
| 452 |
+
async def speak_text(self, text):
|
| 453 |
+
if not text:
|
| 454 |
+
return None, None
|
| 455 |
+
|
| 456 |
+
temp_file = "temp_audio.mp3"
|
| 457 |
+
try:
|
| 458 |
+
communicator = edge_tts.Communicate(text, self.selected_voice)
|
| 459 |
+
await communicator.save(temp_file)
|
| 460 |
+
return temp_file
|
| 461 |
+
except Exception as e:
|
| 462 |
+
print(f"Error during text-to-speech: {e}")
|
| 463 |
+
return None, None
|
| 464 |
+
|
| 465 |
+
def recognize_speech(self, timeout=10, phrase_time_limit=10):
|
| 466 |
+
recognizer = sr.Recognizer()
|
| 467 |
+
recognizer.energy_threshold = 4000
|
| 468 |
+
recognizer.dynamic_energy_threshold = True
|
| 469 |
+
|
| 470 |
+
with sr.Microphone() as source:
|
| 471 |
+
print("Listening...")
|
| 472 |
+
try:
|
| 473 |
+
audio_data = recognizer.listen(source, timeout=timeout, phrase_time_limit=phrase_time_limit)
|
| 474 |
+
print("Processing speech...")
|
| 475 |
+
text = recognizer.recognize_whisper_api(audio_data, api_key=self.hf_token)
|
| 476 |
+
print(f"Recognized: {text}")
|
| 477 |
+
return text
|
| 478 |
+
except sr.WaitTimeoutError:
|
| 479 |
+
print("No speech detected within the timeout period.")
|
| 480 |
+
return ""
|
| 481 |
+
except sr.UnknownValueError:
|
| 482 |
+
print("Speech recognition could not understand audio")
|
| 483 |
+
return ""
|
| 484 |
+
except sr.RequestError as e:
|
| 485 |
+
print(f"Could not request results from Whisper API; {e}")
|
| 486 |
+
return ""
|
| 487 |
+
except Exception as e:
|
| 488 |
+
print(f"An error occurred during speech recognition: {e}")
|
| 489 |
+
return ""
|
| 490 |
+
# === Voice Mode Methods (End) ===
|
| 491 |
+
|
| 492 |
def get_response(self, user_input, image=None):
|
| 493 |
try:
|
| 494 |
+
# === Voice Mode Adaptation (Start) ===
|
| 495 |
+
if self.voice_mode_active:
|
| 496 |
+
print("Voice mode is active, using speech recognition.")
|
| 497 |
+
user_input = self.recognize_speech() # Get input from speech
|
| 498 |
+
if not user_input:
|
| 499 |
+
return "I didn't hear anything." , None
|
| 500 |
+
# === Voice Mode Adaptation (End) ===
|
| 501 |
+
|
| 502 |
messages = []
|
| 503 |
|
| 504 |
messages.append(ChatMessage(
|
|
|
|
| 525 |
role="user",
|
| 526 |
content=user_input
|
| 527 |
).to_dict())
|
| 528 |
+
|
| 529 |
entities = []
|
| 530 |
relationships = []
|
| 531 |
|
|
|
|
| 535 |
extracted_relationships = self.extract_relationships(message['content'])
|
| 536 |
entities.extend(extracted_entities)
|
| 537 |
relationships.extend(extracted_relationships)
|
| 538 |
+
|
| 539 |
self.update_knowledge_graph(entities, relationships)
|
| 540 |
self.run_metacognitive_layer()
|
| 541 |
+
|
| 542 |
for message in messages:
|
| 543 |
if message['role'] == 'user':
|
| 544 |
self.dynamic_belief_update(message['content'])
|
| 545 |
+
|
| 546 |
for cause, effects in self.causal_rules_db.items():
|
| 547 |
if any(cause in msg['content'].lower() for msg in messages if msg['role'] == 'user') and any(
|
| 548 |
effect in msg['content'].lower() for msg in messages for effect in effects):
|
| 549 |
self.store_information("Causal Inference", f"It seems {cause} might be related to {', '.join(effects)}.")
|
| 550 |
+
|
| 551 |
for concept, generalization in self.concept_generalizations.items():
|
| 552 |
if any(concept in msg['content'].lower() for msg in messages if msg['role'] == 'user'):
|
| 553 |
self.store_information("Inferred Knowledge", f"This reminds me of a general principle: {generalization}.")
|
|
|
|
| 555 |
if self.internal_state["emotions"]["curiosity"] > 0.8 and any("?" in msg['content'] for msg in messages if msg['role'] == 'user'):
|
| 556 |
print("Simulating external knowledge seeking...")
|
| 557 |
self.store_information("External Knowledge", "This is a placeholder for external information I would have found")
|
| 558 |
+
|
| 559 |
self.store_information("User Input", user_input)
|
| 560 |
|
| 561 |
input_tokens = sum(len(msg['content'].split()) for msg in messages)
|
| 562 |
max_new_tokens = 16384 - input_tokens - 50
|
| 563 |
|
| 564 |
max_new_tokens = min(max_new_tokens, 10020)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 565 |
|
| 566 |
+
# === Voice Mode Output (Start) ===
|
| 567 |
+
if self.voice_mode_active:
|
| 568 |
+
stream = self.client.chat_completion(
|
| 569 |
+
messages=messages,
|
| 570 |
+
model="Qwen/Qwen-32B-Preview",
|
| 571 |
+
temperature=0.7,
|
| 572 |
+
max_tokens=max_new_tokens,
|
| 573 |
+
top_p=0.9,
|
| 574 |
+
stream=True
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
full_response = ""
|
| 578 |
+
for chunk in stream:
|
| 579 |
+
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
| 580 |
+
full_response += chunk.choices[0].delta.content
|
| 581 |
+
|
| 582 |
+
full_response = self.adjust_response_based_on_state(full_response)
|
| 583 |
+
audio_file = asyncio.run(self.speak_text(full_response))
|
| 584 |
+
|
| 585 |
+
# Update conversation history
|
| 586 |
+
self.conversation_history.append(ChatMessage(role="user", content=user_input).to_dict())
|
| 587 |
+
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
| 588 |
+
|
| 589 |
+
return full_response, audio_file
|
| 590 |
+
|
| 591 |
+
# === Voice Mode Output (End) ===
|
| 592 |
+
else:
|
| 593 |
+
stream = self.client.chat_completion(
|
| 594 |
+
messages=messages,
|
| 595 |
+
model="Qwen/Qwen-32B-Preview",
|
| 596 |
+
temperature=0.7,
|
| 597 |
+
max_tokens=max_new_tokens,
|
| 598 |
+
top_p=0.9,
|
| 599 |
+
stream=True
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
return stream
|
| 603 |
except Exception as e:
|
| 604 |
print(f"Detailed error in get_response: {e}")
|
| 605 |
+
return f"Error generating response: {str(e)}", None
|
| 606 |
|
| 607 |
def extract_entities(self, text):
|
| 608 |
words = text.split()
|
|
|
|
| 619 |
if words[i].istitle() and words[i+2].istitle():
|
| 620 |
relationships.append((words[i], words[i+1], words[i+2]))
|
| 621 |
return relationships
|
| 622 |
+
|
| 623 |
def messages_to_prompt(self, messages):
|
| 624 |
prompt = ""
|
| 625 |
for msg in messages:
|
|
|
|
| 633 |
return prompt
|
| 634 |
|
| 635 |
def create_interface(self):
|
| 636 |
+
# === Voice-Specific UI Elements (Start) ===
|
| 637 |
+
def toggle_voice_mode(active_state):
|
| 638 |
+
self.voice_mode_active = active_state
|
| 639 |
+
if self.voice_mode_active:
|
| 640 |
+
# Get the list of available voices
|
| 641 |
+
voices = asyncio.run(edge_tts.list_voices())
|
| 642 |
+
voice_names = [voice['ShortName'] for voice in voices]
|
| 643 |
+
|
| 644 |
+
# Select a random voice from the list
|
| 645 |
+
random_voice = random.choice(voice_names)
|
| 646 |
+
self.selected_voice = random_voice
|
| 647 |
+
|
| 648 |
+
return gr.Button.update(value="Stop Voice Mode"), gr.Dropdown.update(value=random_voice)
|
| 649 |
+
else:
|
| 650 |
+
return gr.Button.update(value="Start Voice Mode"), gr.Dropdown.update(value=self.selected_voice)
|
| 651 |
+
|
| 652 |
+
def update_selected_voice(voice_name):
|
| 653 |
+
self.selected_voice = voice_name
|
| 654 |
+
return voice_name
|
| 655 |
+
|
| 656 |
+
# === Voice-Specific UI Elements (End) ===
|
| 657 |
+
|
| 658 |
+
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path, voice_mode_state, selected_voice):
|
| 659 |
+
if self.voice_mode_active:
|
| 660 |
+
response_text, audio_output = self.get_response(message)
|
| 661 |
+
|
| 662 |
+
if isinstance(response_text, str):
|
| 663 |
+
updated_history = chat_history + [[message, response_text]]
|
| 664 |
+
if audio_output:
|
| 665 |
+
yield updated_history, audio_output, None, None, ""
|
| 666 |
+
else:
|
| 667 |
+
yield updated_history, None, None, None, ""
|
| 668 |
+
else:
|
| 669 |
+
full_response = ""
|
| 670 |
+
updated_history = chat_history + [[message, ""]]
|
| 671 |
+
try:
|
| 672 |
+
for chunk in response_text:
|
| 673 |
+
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
| 674 |
+
chunk_content = chunk.choices[0].delta.content
|
| 675 |
+
full_response += chunk_content
|
| 676 |
+
updated_history[-1][1] = full_response
|
| 677 |
+
if audio_output:
|
| 678 |
+
yield updated_history, audio_output, None, None, ""
|
| 679 |
+
else:
|
| 680 |
+
yield updated_history, None, None, None, ""
|
| 681 |
+
except Exception as e:
|
| 682 |
+
print(f"Streaming error: {e}")
|
| 683 |
+
updated_history[-1][1] = f"Error during response: {e}"
|
| 684 |
+
if audio_output:
|
| 685 |
+
yield updated_history, audio_output, None, None, ""
|
| 686 |
+
else:
|
| 687 |
+
yield updated_history, None, None, None, ""
|
| 688 |
+
return
|
| 689 |
+
|
| 690 |
+
full_response = self.adjust_response_based_on_state(full_response)
|
| 691 |
+
|
| 692 |
+
audio_file = asyncio.run(self.speak_text(full_response))
|
| 693 |
+
|
| 694 |
+
self.update_goals(message)
|
| 695 |
+
|
| 696 |
+
emotion_deltas = {}
|
| 697 |
+
cognitive_load_deltas = {}
|
| 698 |
+
engagement_delta = 0
|
| 699 |
+
|
| 700 |
+
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
|
| 701 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1, "sadness": 0.3, "joy": -0.2})
|
| 702 |
+
engagement_delta = -0.1
|
| 703 |
+
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
|
| 704 |
+
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1, "sadness": -0.2, "joy": 0.3})
|
| 705 |
+
engagement_delta = 0.2
|
| 706 |
+
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
|
| 707 |
+
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2, "sadness": 0.1, "joy": -0.1})
|
| 708 |
+
engagement_delta = -0.2
|
| 709 |
+
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
|
| 710 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2, "sadness": 0.2})
|
| 711 |
+
engagement_delta = -0.1
|
| 712 |
+
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
|
| 713 |
+
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3, "sadness": -0.1, "joy": 0.1})
|
| 714 |
+
engagement_delta = 0.3
|
| 715 |
+
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
|
| 716 |
+
cognitive_load_deltas.update({"processing_intensity": 0.2})
|
| 717 |
+
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1, "sadness": 0.1})
|
| 718 |
+
engagement_delta = 0.1
|
| 719 |
+
else:
|
| 720 |
+
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
| 721 |
+
engagement_delta = 0.05
|
| 722 |
+
|
| 723 |
+
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
|
| 724 |
+
emotion_deltas.update({"curiosity": 0.3})
|
| 725 |
+
cognitive_load_deltas.update({"processing_intensity": 0.1})
|
| 726 |
+
engagement_delta = 0.2
|
| 727 |
+
|
| 728 |
+
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
| 729 |
+
|
| 730 |
+
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
| 731 |
+
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
| 732 |
+
|
| 733 |
+
if len(self.conversation_history) > 10:
|
| 734 |
+
self.conversation_history = self.conversation_history[-10:]
|
| 735 |
+
|
| 736 |
+
if audio_file:
|
| 737 |
+
yield updated_history, audio_file, None, None, ""
|
| 738 |
+
else:
|
| 739 |
+
yield updated_history, None, None, None, ""
|
| 740 |
+
|
| 741 |
+
# Handling /image command for image generation
|
| 742 |
+
if "/image" in message:
|
| 743 |
+
image_prompt = message.replace("/image", "").strip()
|
| 744 |
+
|
| 745 |
+
# Updated placeholder SVG with animation and text
|
| 746 |
+
placeholder_image = "data:image/svg+xml," + requests.utils.quote(f'''
|
| 747 |
+
<svg width="256" height="256" viewBox="0 0 256 256" xmlns="http://www.w3.org/2000/svg">
|
| 748 |
+
<style>
|
| 749 |
+
rect {{
|
| 750 |
+
animation: fillAnimation 3s ease-in-out infinite;
|
| 751 |
+
}}
|
| 752 |
+
@keyframes fillAnimation {{
|
| 753 |
+
0% {{ fill: #626262; }}
|
| 754 |
+
50% {{ fill: #111111; }}
|
| 755 |
+
100% {{ fill: #626262; }}
|
| 756 |
+
}}
|
| 757 |
+
text {{
|
| 758 |
+
font-family: 'Helvetica Neue', Arial, sans-serif; /* Choose a good font */
|
| 759 |
+
font-weight: 300; /* Slightly lighter font weight */
|
| 760 |
+
text-shadow: 0px 2px 4px rgba(0, 0, 0, 0.4); /* Subtle shadow */
|
| 761 |
+
}}
|
| 762 |
+
</style>
|
| 763 |
+
<rect width="256" height="256" rx="20" fill="#888888" />
|
| 764 |
+
<text x="50%" y="50%" dominant-baseline="middle" text-anchor="middle" font-size="24" fill="white" opacity="0.8">
|
| 765 |
+
<tspan>creating your image</tspan>
|
| 766 |
+
<tspan x="50%" dy="1.2em">with xylaria iris</tspan>
|
| 767 |
+
</text>
|
| 768 |
+
</svg>
|
| 769 |
+
''')
|
| 770 |
+
|
| 771 |
+
updated_history = chat_history + [[message, gr.Image(value=placeholder_image, type="pil", visible=True)]]
|
| 772 |
+
yield updated_history, None, None, None, ""
|
| 773 |
+
|
| 774 |
+
try:
|
| 775 |
+
generated_image = self.generate_image(image_prompt)
|
| 776 |
+
|
| 777 |
+
updated_history[-1][1] = gr.Image(value=generated_image, type="pil", visible=True)
|
| 778 |
+
yield updated_history, None, None, None, ""
|
| 779 |
+
|
| 780 |
+
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
| 781 |
+
self.conversation_history.append(ChatMessage(role="assistant", content="Image generated").to_dict())
|
| 782 |
+
|
| 783 |
+
return
|
| 784 |
+
except Exception as e:
|
| 785 |
+
updated_history[-1][1] = f"Error generating image: {e}"
|
| 786 |
+
yield updated_history, None, None, None, ""
|
| 787 |
+
return
|
| 788 |
+
|
| 789 |
ocr_text = ""
|
| 790 |
if math_ocr_image_path:
|
| 791 |
ocr_text = self.perform_math_ocr(math_ocr_image_path)
|
| 792 |
if ocr_text.startswith("Error"):
|
| 793 |
updated_history = chat_history + [[message, ocr_text]]
|
| 794 |
+
yield updated_history, None, None, None, ""
|
| 795 |
return
|
| 796 |
else:
|
| 797 |
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
|
|
|
|
| 800 |
response_stream = self.get_response(message, image_filepath)
|
| 801 |
else:
|
| 802 |
response_stream = self.get_response(message)
|
| 803 |
+
|
| 804 |
if isinstance(response_stream, str):
|
| 805 |
updated_history = chat_history + [[message, response_stream]]
|
| 806 |
+
yield updated_history, None, None, None, ""
|
| 807 |
return
|
| 808 |
|
| 809 |
full_response = ""
|
|
|
|
| 814 |
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
| 815 |
chunk_content = chunk.choices[0].delta.content
|
| 816 |
full_response += chunk_content
|
| 817 |
+
|
| 818 |
updated_history[-1][1] = full_response
|
| 819 |
+
yield updated_history, None, None, None, ""
|
| 820 |
except Exception as e:
|
| 821 |
print(f"Streaming error: {e}")
|
| 822 |
updated_history[-1][1] = f"Error during response: {e}"
|
| 823 |
+
yield updated_history, None, None, None, ""
|
| 824 |
return
|
| 825 |
|
| 826 |
full_response = self.adjust_response_based_on_state(full_response)
|
|
|
|
| 853 |
else:
|
| 854 |
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
| 855 |
engagement_delta = 0.05
|
| 856 |
+
|
| 857 |
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
|
| 858 |
emotion_deltas.update({"curiosity": 0.3})
|
| 859 |
cognitive_load_deltas.update({"processing_intensity": 0.1})
|
| 860 |
engagement_delta = 0.2
|
| 861 |
+
|
| 862 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
| 863 |
+
|
| 864 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
| 865 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
| 866 |
|
|
|
|
| 868 |
self.conversation_history = self.conversation_history[-10:]
|
| 869 |
|
| 870 |
custom_css = """
|
| 871 |
+
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap');
|
| 872 |
+
|
| 873 |
+
body {
|
| 874 |
+
background-color: #f5f5f5;
|
| 875 |
+
font-family: 'Source Sans Pro', sans-serif;
|
| 876 |
+
}
|
| 877 |
+
|
| 878 |
+
.voice-mode-button {
|
| 879 |
+
background-color: #4CAF50; /* Green */
|
| 880 |
+
border: none;
|
| 881 |
+
color: white;
|
| 882 |
+
padding: 15px 32px;
|
| 883 |
+
text-align: center;
|
| 884 |
+
text-decoration: none;
|
| 885 |
+
display: inline-block;
|
| 886 |
+
font-size: 16px;
|
| 887 |
+
margin: 4px 2px;
|
| 888 |
+
cursor: pointer;
|
| 889 |
+
border-radius: 10px; /* Rounded corners */
|
| 890 |
+
transition: all 0.3s ease; /* Smooth transition for hover effect */
|
| 891 |
+
}
|
| 892 |
+
|
| 893 |
+
/* Style when voice mode is active */
|
| 894 |
+
.voice-mode-button.active {
|
| 895 |
+
background-color: #f44336; /* Red */
|
| 896 |
+
}
|
| 897 |
+
|
| 898 |
+
/* Hover effect */
|
| 899 |
+
.voice-mode-button:hover {
|
| 900 |
+
opacity: 0.8;
|
| 901 |
+
}
|
| 902 |
+
|
| 903 |
+
/* Style for the voice mode overlay */
|
| 904 |
+
.voice-mode-overlay {
|
| 905 |
+
position: fixed; /* Stay in place */
|
| 906 |
+
left: 0;
|
| 907 |
+
top: 0;
|
| 908 |
+
width: 100%; /* Full width */
|
| 909 |
+
height: 100%; /* Full height */
|
| 910 |
+
background-color: rgba(0, 0, 0, 0.7); /* Black w/ opacity */
|
| 911 |
+
z-index: 10; /* Sit on top */
|
| 912 |
+
display: flex;
|
| 913 |
+
justify-content: center;
|
| 914 |
+
align-items: center;
|
| 915 |
+
border-radius: 10px;
|
| 916 |
+
}
|
| 917 |
+
|
| 918 |
+
/* Style for the growing circle */
|
| 919 |
+
.voice-mode-circle {
|
| 920 |
+
width: 100px;
|
| 921 |
+
height: 100px;
|
| 922 |
+
background-color: #4CAF50;
|
| 923 |
+
border-radius: 50%;
|
| 924 |
+
display: flex;
|
| 925 |
+
justify-content: center;
|
| 926 |
+
align-items: center;
|
| 927 |
+
animation: grow 2s infinite;
|
| 928 |
}
|
| 929 |
+
|
| 930 |
+
/* Keyframes for the growing animation */
|
| 931 |
+
@keyframes grow {
|
| 932 |
+
0% {
|
| 933 |
+
transform: scale(1);
|
| 934 |
+
opacity: 0.8;
|
| 935 |
+
}
|
| 936 |
+
50% {
|
| 937 |
+
transform: scale(1.5);
|
| 938 |
+
opacity: 0.5;
|
| 939 |
+
}
|
| 940 |
+
100% {
|
| 941 |
+
transform: scale(1);
|
| 942 |
+
opacity: 0.8;
|
| 943 |
+
}
|
| 944 |
+
}
|
| 945 |
+
|
| 946 |
+
.gradio-container {
|
| 947 |
+
max-width: 900px;
|
| 948 |
+
margin: 0 auto;
|
| 949 |
+
border-radius: 10px;
|
| 950 |
+
box-shadow: 0px 4px 20px rgba(0, 0, 0, 0.1);
|
| 951 |
+
}
|
| 952 |
+
|
| 953 |
+
.chatbot-container {
|
| 954 |
+
background-color: #fff;
|
| 955 |
+
border-radius: 10px;
|
| 956 |
+
padding: 20px;
|
| 957 |
+
}
|
| 958 |
+
|
| 959 |
.chatbot-container .message {
|
| 960 |
+
font-family: 'Source Sans Pro', sans-serif;
|
| 961 |
+
font-size: 16px;
|
| 962 |
+
line-height: 1.6;
|
| 963 |
}
|
| 964 |
+
|
| 965 |
.gradio-container input,
|
| 966 |
.gradio-container textarea,
|
| 967 |
.gradio-container button {
|
| 968 |
+
font-family: 'Source Sans Pro', sans-serif;
|
| 969 |
+
font-size: 16px;
|
| 970 |
+
border-radius: 8px;
|
| 971 |
}
|
| 972 |
+
|
| 973 |
.image-container {
|
| 974 |
display: flex;
|
| 975 |
gap: 10px;
|
| 976 |
+
margin-bottom: 20px;
|
| 977 |
+
justify-content: center;
|
| 978 |
}
|
| 979 |
+
|
| 980 |
.image-upload {
|
| 981 |
+
border: 2px dashed #d3d3d3;
|
| 982 |
border-radius: 8px;
|
| 983 |
+
padding: 20px;
|
| 984 |
+
background-color: #fafafa;
|
| 985 |
+
text-align: center;
|
| 986 |
+
transition: all 0.3s ease;
|
| 987 |
+
}
|
| 988 |
+
|
| 989 |
+
.image-upload:hover {
|
| 990 |
+
background-color: #f0f0f0;
|
| 991 |
+
border-color: #b3b3b3;
|
| 992 |
}
|
| 993 |
+
|
| 994 |
.image-preview {
|
| 995 |
+
max-width: 150px;
|
| 996 |
+
max-height: 150px;
|
| 997 |
border-radius: 8px;
|
| 998 |
+
box-shadow: 0px 2px 5px rgba(0, 0, 0, 0.1);
|
| 999 |
}
|
| 1000 |
+
|
| 1001 |
.clear-button {
|
| 1002 |
display: none;
|
| 1003 |
}
|
| 1004 |
+
|
| 1005 |
.chatbot-container .message {
|
| 1006 |
opacity: 0;
|
| 1007 |
animation: fadeIn 0.5s ease-in-out forwards;
|
| 1008 |
}
|
| 1009 |
+
|
| 1010 |
@keyframes fadeIn {
|
| 1011 |
from {
|
| 1012 |
opacity: 0;
|
|
|
|
| 1017 |
transform: translateY(0);
|
| 1018 |
}
|
| 1019 |
}
|
| 1020 |
+
|
| 1021 |
.gr-accordion-button {
|
| 1022 |
background-color: #f0f0f0 !important;
|
| 1023 |
border-radius: 8px !important;
|
| 1024 |
+
padding: 15px !important;
|
| 1025 |
margin-bottom: 10px !important;
|
| 1026 |
transition: all 0.3s ease !important;
|
| 1027 |
cursor: pointer !important;
|
| 1028 |
+
border: none !important;
|
| 1029 |
+
box-shadow: 0px 2px 5px rgba(0, 0, 0, 0.05) !important;
|
| 1030 |
}
|
| 1031 |
+
|
| 1032 |
.gr-accordion-button:hover {
|
| 1033 |
background-color: #e0e0e0 !important;
|
| 1034 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1) !important;
|
| 1035 |
}
|
| 1036 |
+
|
| 1037 |
.gr-accordion-active .gr-accordion-button {
|
| 1038 |
background-color: #d0d0d0 !important;
|
| 1039 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1) !important;
|
| 1040 |
}
|
| 1041 |
+
|
| 1042 |
.gr-accordion-content {
|
| 1043 |
transition: max-height 0.3s ease-in-out !important;
|
| 1044 |
overflow: hidden !important;
|
| 1045 |
max-height: 0 !important;
|
| 1046 |
}
|
| 1047 |
+
|
| 1048 |
.gr-accordion-active .gr-accordion-content {
|
| 1049 |
max-height: 500px !important;
|
| 1050 |
}
|
| 1051 |
+
|
| 1052 |
.gr-accordion {
|
| 1053 |
display: flex;
|
| 1054 |
flex-direction: column-reverse;
|
| 1055 |
}
|
| 1056 |
+
|
| 1057 |
+
.chatbot-icon {
|
| 1058 |
+
width: 40px;
|
| 1059 |
+
height: 40px;
|
| 1060 |
+
border-radius: 50%;
|
| 1061 |
+
margin-right: 10px;
|
| 1062 |
+
}
|
| 1063 |
+
|
| 1064 |
+
.user-message .message-row {
|
| 1065 |
+
background-color: #e8f0fe;
|
| 1066 |
+
border-radius: 10px;
|
| 1067 |
+
padding: 10px;
|
| 1068 |
+
margin-bottom: 10px;
|
| 1069 |
+
border-top-right-radius: 2px;
|
| 1070 |
+
}
|
| 1071 |
+
|
| 1072 |
+
.assistant-message .message-row {
|
| 1073 |
+
background-color: #f0f0f0;
|
| 1074 |
+
border-radius: 10px;
|
| 1075 |
+
padding: 10px;
|
| 1076 |
+
margin-bottom: 10px;
|
| 1077 |
+
border-top-left-radius: 2px;
|
| 1078 |
+
}
|
| 1079 |
+
|
| 1080 |
+
.user-message .message-icon {
|
| 1081 |
+
background: url('https://img.icons8.com/color/48/000000/user.png') no-repeat center center;
|
| 1082 |
+
background-size: contain;
|
| 1083 |
+
width: 30px;
|
| 1084 |
+
height: 30px;
|
| 1085 |
+
margin-right: 10px;
|
| 1086 |
+
}
|
| 1087 |
+
|
| 1088 |
+
.assistant-message .message-icon {
|
| 1089 |
+
background: url('https://i.ibb.co/7b7hLGH/Senoa-Icon-1.png') no-repeat center center;
|
| 1090 |
+
background-size: cover;
|
| 1091 |
+
width: 40px;
|
| 1092 |
+
height: 40px;
|
| 1093 |
+
margin-right: 10px;
|
| 1094 |
+
border-radius: 50%;
|
| 1095 |
+
}
|
| 1096 |
+
|
| 1097 |
+
.message-text {
|
| 1098 |
+
flex-grow: 1;
|
| 1099 |
+
}
|
| 1100 |
+
|
| 1101 |
+
.message-row {
|
| 1102 |
+
display: flex;
|
| 1103 |
+
align-items: center;
|
| 1104 |
+
}
|
| 1105 |
+
|
| 1106 |
+
.audio-container {
|
| 1107 |
+
display: flex;
|
| 1108 |
+
align-items: center;
|
| 1109 |
+
margin-top: 10px;
|
| 1110 |
+
}
|
| 1111 |
+
|
| 1112 |
+
.audio-player {
|
| 1113 |
+
width: 100%;
|
| 1114 |
+
border-radius: 15px;
|
| 1115 |
+
}
|
| 1116 |
+
|
| 1117 |
+
.audio-icon {
|
| 1118 |
+
width: 30px;
|
| 1119 |
+
height: 30px;
|
| 1120 |
+
margin-right: 10px;
|
| 1121 |
+
}
|
| 1122 |
"""
|
| 1123 |
|
| 1124 |
+
with gr.Blocks(theme=gr.themes.Soft(
|
| 1125 |
+
primary_hue="slate",
|
| 1126 |
+
secondary_hue="gray",
|
| 1127 |
+
neutral_hue="gray",
|
| 1128 |
+
font=["Source Sans Pro", "Arial", "sans-serif"],
|
| 1129 |
+
), css=custom_css) as demo:
|
| 1130 |
with gr.Column():
|
| 1131 |
chatbot = gr.Chatbot(
|
| 1132 |
label="Xylaria 1.5 Senoa",
|
| 1133 |
+
height=600,
|
| 1134 |
show_copy_button=True,
|
| 1135 |
+
elem_classes="chatbot-container",
|
| 1136 |
+
avatar_images=(
|
| 1137 |
+
"https://img.icons8.com/color/48/000000/user.png", # User avatar
|
| 1138 |
+
"https://i.ibb.co/7b7hLGH/Senoa-Icon-1.png" # Bot avatar
|
| 1139 |
+
)
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
# === Voice Mode UI (Start) ===
|
| 1143 |
+
voice_mode_btn = gr.Button("Start Voice Mode", elem_classes="voice-mode-button")
|
| 1144 |
+
|
| 1145 |
+
voices = asyncio.run(edge_tts.list_voices())
|
| 1146 |
+
voice_names = [voice['ShortName'] for voice in voices]
|
| 1147 |
+
|
| 1148 |
+
voice_dropdown = gr.Dropdown(
|
| 1149 |
+
label="Select Voice",
|
| 1150 |
+
choices=voice_names,
|
| 1151 |
+
value=self.selected_voice,
|
| 1152 |
+
interactive=True
|
| 1153 |
+
)
|
| 1154 |
+
voice_dropdown.input(
|
| 1155 |
+
fn=update_selected_voice,
|
| 1156 |
+
inputs=voice_dropdown,
|
| 1157 |
+
outputs=voice_dropdown
|
| 1158 |
+
)
|
| 1159 |
+
voice_mode_btn.click(
|
| 1160 |
+
fn=toggle_voice_mode,
|
| 1161 |
+
inputs=voice_mode_btn,
|
| 1162 |
+
outputs=[voice_mode_btn, voice_dropdown]
|
| 1163 |
)
|
| 1164 |
+
# === Voice Mode UI (End) ===
|
| 1165 |
|
| 1166 |
with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
|
| 1167 |
with gr.Row(elem_classes="image-container"):
|
|
|
|
| 1190 |
btn = gr.Button("Send", scale=1)
|
| 1191 |
|
| 1192 |
with gr.Row():
|
| 1193 |
+
clear = gr.Button("Clear Conversation", variant="stop")
|
| 1194 |
clear_memory = gr.Button("Clear Memory")
|
| 1195 |
|
| 1196 |
+
# Pass voice_mode_state and selected_voice to the streaming_response function
|
| 1197 |
btn.click(
|
| 1198 |
fn=streaming_response,
|
| 1199 |
+
inputs=[txt, chatbot, img, math_ocr_img, voice_mode_btn, voice_dropdown],
|
| 1200 |
+
outputs=[chatbot, gr.Audio(label="Audio Response", type="filepath", autoplay=True, visible=True), img, math_ocr_img, txt]
|
| 1201 |
)
|
| 1202 |
txt.submit(
|
| 1203 |
fn=streaming_response,
|
| 1204 |
+
inputs=[txt, chatbot, img, math_ocr_img, voice_mode_btn, voice_dropdown],
|
| 1205 |
+
outputs=[chatbot, gr.Audio(label="Audio Response", type="filepath", autoplay=True, visible=True), img, math_ocr_img, txt]
|
| 1206 |
)
|
| 1207 |
|
| 1208 |
clear.click(
|