Spaces:
Sleeping
Sleeping
File size: 17,093 Bytes
8ef276c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# contact_search_service.py
"""
Contact search service with intelligent matching:
- Name-based search (exact and fuzzy matching)
- Division-based search
- Combined search (name + division)
- Confidence scoring
"""
import logging
from typing import List, Dict, Optional, Tuple
from difflib import SequenceMatcher
import re
from contacts_data import (
get_all_contacts,
get_contacts_by_division,
get_contact_by_name
)
from name_extraction_service import NameExtractor
from embedding_service import EmbeddingService
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ContactSearchService:
"""
Service for searching contacts with intelligent matching.
Features:
- Exact name matching (100% confidence)
- Fuzzy name matching (partial names, typos)
- Division-based matching
- Combined search (name + division)
- Multi-language support (English and Arabic)
"""
def __init__(
self,
name_extractor: NameExtractor,
embedding_service: EmbeddingService
):
"""
Initialize the contact search service.
Args:
name_extractor: NameExtractor service for extracting names from queries
embedding_service: EmbeddingService for division matching
"""
self.name_extractor = name_extractor
self.embedding_service = embedding_service
self.all_contacts = get_all_contacts()
logger.info(f"ContactSearchService initialized with {len(self.all_contacts)} contacts")
def search_contacts(
self,
query: str,
top_k: int = 10,
min_confidence: float = 0.3
) -> List[Dict]:
"""
Search for contacts based on query.
Process:
1. Extract names from query
2. Find matching divisions
3. Match contacts by:
- Exact name match (if name found) โ confidence = 1.0
- Fuzzy name match โ confidence based on similarity
- Division match โ confidence from embedding service
- Combined match (name + division) โ boosted confidence
4. Sort by confidence (exact matches first)
Args:
query: Search query (English or Arabic)
top_k: Maximum number of results to return
min_confidence: Minimum confidence threshold (0.0-1.0)
Returns:
List of matched contacts with confidence scores
"""
logger.info(f"Searching contacts for query: '{query}'")
# Step 1: Extract names from query
extracted_names = self.name_extractor.extract_names(query)
logger.info(f"Extracted names: {extracted_names}")
# Step 2: Find matching divisions
division_matches = self.embedding_service.find_division(query, top_k=3)
logger.info(f"Found {len(division_matches)} division matches")
# Step 3: Match contacts
matched_contacts = []
has_names = len(extracted_names) > 0
has_divisions = len(division_matches) > 0
requested_divisions = [dm.division for dm in division_matches] if has_divisions else []
# Strategy A: If we have names, search by name
name_matches = {} # Track name matches by contact ID
if extracted_names:
for name in extracted_names:
# Try exact match first
exact_match = get_contact_by_name(name)
if exact_match:
contact_id = exact_match["id"]
name_matches[contact_id] = {
"contact": exact_match,
"confidence": 1.0,
"similarity": 1.0,
"match_type": "exact"
}
logger.info(f"โ Exact name match: {exact_match['full_name_en']}")
else:
# Fuzzy name matching
fuzzy_matches = self._fuzzy_name_search(name, top_k=10)
for contact, similarity in fuzzy_matches:
contact_id = contact["id"]
# Only keep best match for each contact
if contact_id not in name_matches or similarity > name_matches[contact_id]["similarity"]:
name_matches[contact_id] = {
"contact": contact,
"confidence": round(0.5 + (similarity * 0.45), 2),
"similarity": round(similarity, 2),
"match_type": "fuzzy"
}
logger.info(
f"Fuzzy name match: {contact['full_name_en']} "
f"(similarity: {similarity:.2f})"
)
# Strategy B: Division-based search
division_matches_dict = {} # Track division matches by contact ID
for div_match in division_matches:
division = div_match.division
division_confidence = div_match.confidence
# Get contacts in this division
division_contacts = get_contacts_by_division(division)
for contact in division_contacts:
contact_id = contact["id"]
# Only keep best division match for each contact
if contact_id not in division_matches_dict or division_confidence > division_matches_dict[contact_id]["confidence"]:
division_matches_dict[contact_id] = {
"contact": contact,
"confidence": division_confidence,
"division": division
}
# Strategy C: Combine matches intelligently
# Priority when BOTH name and division are specified:
# 1. Name + Correct Division = HIGHEST (both match)
# 2. Correct Division only = HIGH (division is most important)
# 3. Name + Wrong Division = LOW (penalize wrong division)
all_contact_ids = set(name_matches.keys()) | set(division_matches_dict.keys())
for contact_id in all_contact_ids:
has_name_match = contact_id in name_matches
has_division_match = contact_id in division_matches_dict
if has_name_match and has_division_match:
# BOTH name and division match - BEST CASE
name_data = name_matches[contact_id]
div_data = division_matches_dict[contact_id]
contact = name_data["contact"]
# When both match: take MAX of the two confidences and add a boost
# This ensures division + name is always better than division alone
combined_confidence = max(name_data["confidence"], div_data["confidence"]) + 0.15
combined_confidence = min(1.0, combined_confidence)
contact_result = contact.copy()
contact_result["confidence"] = round(combined_confidence, 2)
contact_result["match_reason"] = "name_and_division_match"
contact_result["name_confidence"] = name_data["confidence"]
contact_result["division_confidence"] = div_data["confidence"]
matched_contacts.append(contact_result)
logger.info(
f"โ BOTH match: {contact['full_name_en']} in {div_data['division']} "
f"(final confidence: {contact_result['confidence']})"
)
elif has_division_match:
# Division match only (no name specified, or name didn't match this person)
div_data = division_matches_dict[contact_id]
contact = div_data["contact"]
contact_result = contact.copy()
contact_result["confidence"] = div_data["confidence"]
contact_result["match_reason"] = "division_match"
contact_result["division_confidence"] = div_data["confidence"]
matched_contacts.append(contact_result)
elif has_name_match:
# Name match but WRONG division (or no division specified)
name_data = name_matches[contact_id]
contact = name_data["contact"]
# If division was specified in query AND has reasonable confidence (>= 0.58)
# Apply penalty for being in wrong division
# If division confidence is very low (< 0.58), treat as name-only search
# This threshold helps avoid false division matches from words like "Find" (which scores ~0.56)
# while still catching abbreviations like "App Dev" (which scores ~0.59)
has_strong_division_match = has_divisions and division_matches[0].confidence >= 0.58
if has_strong_division_match:
# Heavy penalty for wrong division when division was specified with confidence
penalized_confidence = name_data["confidence"] * 0.3 # 70% penalty
contact_result = contact.copy()
contact_result["confidence"] = round(penalized_confidence, 2)
contact_result["match_reason"] = "name_match_wrong_division"
contact_result["name_confidence"] = name_data["confidence"]
contact_result["requested_division"] = ", ".join(requested_divisions[:2])
matched_contacts.append(contact_result)
logger.info(
f"Name match with WRONG division: {contact['full_name_en']} "
f"in {contact['division']} (wanted: {requested_divisions[0]}, "
f"confidence: {contact_result['confidence']})"
)
else:
# No division specified OR weak division match - use name confidence as-is
contact_result = contact.copy()
contact_result["confidence"] = name_data["confidence"]
contact_result["match_reason"] = f"{name_data['match_type']}_name_match"
contact_result["name_confidence"] = name_data["confidence"]
matched_contacts.append(contact_result)
# Step 4: Remove duplicates (keep highest confidence)
unique_contacts = {}
for contact in matched_contacts:
contact_id = contact["id"]
if contact_id not in unique_contacts:
unique_contacts[contact_id] = contact
else:
# Keep the one with higher confidence
if contact["confidence"] > unique_contacts[contact_id]["confidence"]:
unique_contacts[contact_id] = contact
# Convert back to list
matched_contacts = list(unique_contacts.values())
# Step 5: Filter by minimum confidence
matched_contacts = [
c for c in matched_contacts if c["confidence"] >= min_confidence
]
# Step 6: Sort by confidence (descending) - exact matches will be first
matched_contacts.sort(key=lambda x: x["confidence"], reverse=True)
# Step 7: Limit to top_k
matched_contacts = matched_contacts[:top_k]
logger.info(f"โ Returning {len(matched_contacts)} matched contacts")
return matched_contacts
def _fuzzy_name_search(
self,
name: str,
top_k: int = 5,
min_similarity: float = 0.75 # Increased from 0.6 to avoid false matches
) -> List[Tuple[Dict, float]]:
"""
Fuzzy name matching using string similarity with stricter rules.
Args:
name: Name to search for
top_k: Number of top matches to return
min_similarity: Minimum similarity threshold (0.0-1.0)
Returns:
List of (contact, similarity_score) tuples
"""
matches = []
# Normalize name for comparison
name_normalized = self._normalize_name(name)
# Get first letter for initial matching (helps avoid false positives)
name_first_letter = name_normalized[0] if name_normalized else ''
for contact in self.all_contacts:
# Check against both Arabic and English names
full_name_en_normalized = self._normalize_name(contact["full_name_en"])
full_name_ar_normalized = self._normalize_name(contact["full_name_ar"])
first_name_en_normalized = self._normalize_name(contact["first_name_en"])
first_name_ar_normalized = self._normalize_name(contact["first_name_ar"])
last_name_en_normalized = self._normalize_name(contact["last_name_en"])
last_name_ar_normalized = self._normalize_name(contact["last_name_ar"])
# Calculate similarity against various name combinations
name_candidates = [
(full_name_en_normalized, "full_en"),
(full_name_ar_normalized, "full_ar"),
(first_name_en_normalized, "first_en"),
(first_name_ar_normalized, "first_ar"),
(last_name_en_normalized, "last_en"),
(last_name_ar_normalized, "last_ar"),
]
best_similarity = 0
best_match_type = None
for candidate_name, match_type in name_candidates:
if not candidate_name:
continue
similarity = self._string_similarity(name_normalized, candidate_name)
# Apply stricter rules for fuzzy matching:
# 1. Names should start with the same letter (for English names)
# 2. Or have very high similarity (>= 0.85)
if match_type.endswith('_en'):
candidate_first_letter = candidate_name[0] if candidate_name else ''
# Require same first letter OR very high similarity
if candidate_first_letter != name_first_letter and similarity < 0.85:
continue # Skip this match
if similarity > best_similarity:
best_similarity = similarity
best_match_type = match_type
if best_similarity >= min_similarity:
matches.append((contact, best_similarity))
# Sort by similarity (descending)
matches.sort(key=lambda x: x[1], reverse=True)
return matches[:top_k]
def _normalize_name(self, name: str) -> str:
"""Normalize name for comparison (lowercase, remove extra spaces)"""
return re.sub(r'\s+', ' ', name.strip().lower())
def _string_similarity(self, s1: str, s2: str) -> float:
"""
Calculate string similarity using SequenceMatcher.
Returns:
Similarity score between 0.0 and 1.0
"""
return SequenceMatcher(None, s1, s2).ratio()
def get_contact_stats(self) -> Dict:
"""Get statistics about the contact database"""
from collections import Counter
dept_counts = Counter(contact["department"] for contact in self.all_contacts)
div_counts = Counter(contact["division"] for contact in self.all_contacts)
return {
"total_contacts": len(self.all_contacts),
"departments": len(dept_counts),
"divisions": len(div_counts),
"contacts_by_department": dict(dept_counts),
"contacts_by_division": dict(div_counts),
}
if __name__ == "__main__":
# Test the contact search service
from name_extraction_service import NameExtractor
from embedding_service import EmbeddingService
print("Initializing services...")
name_extractor = NameExtractor()
embedding_service = EmbeddingService()
search_service = ContactSearchService(name_extractor, embedding_service)
print("\nContact Database Stats:")
stats = search_service.get_contact_stats()
print(f"Total contacts: {stats['total_contacts']}")
print(f"Departments: {stats['departments']}")
print(f"Divisions: {stats['divisions']}")
# Test queries
test_queries = [
"Find Ahmed in IT",
"I need to talk to someone in HR",
"ู
ุญู
ุฏ ูู ุงูู
ุงููุฉ", # "Mohammed in Finance" in Arabic
"Finance accounting help",
]
print("\n" + "="*80)
print("Testing Contact Search")
print("="*80)
for query in test_queries:
print(f"\nQuery: '{query}'")
print("-" * 80)
results = search_service.search_contacts(query, top_k=3)
if results:
for i, contact in enumerate(results, 1):
print(f"{i}. {contact['full_name_en']} ({contact['full_name_ar']})")
print(f" {contact['title_en']} - {contact['division']}")
print(f" {contact['email']} | Ext: {contact['extension']}")
print(f" Confidence: {contact['confidence']:.2f} | Reason: {contact['match_reason']}")
else:
print("No matches found.")
|