Spaces:
Sleeping
Sleeping
File size: 10,295 Bytes
8ef276c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# voice_processing_service.py
import logging
import whisper
import os
import tempfile
from typing import Dict, Any, Optional
from pathlib import Path
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class VoiceProcessor:
"""
Service for processing voice queries with speech-to-text and translation.
Features:
- Speech-to-text using OpenAI Whisper
- Automatic language detection
- Arabic-to-English translation
- Supports 99+ languages
- Works offline
Whisper Model Sizes:
- tiny: 39M params, ~1GB RAM, fast but less accurate
- base: 74M params, ~1GB RAM, balanced (RECOMMENDED for quick start)
- small: 244M params, ~2GB RAM, good accuracy
- medium: 769M params, ~5GB RAM, better accuracy
- large: 1550M params, ~10GB RAM, best accuracy
"""
def __init__(self, model_size: str = "base"):
"""
Initialize the voice processing service.
Args:
model_size: Whisper model to use. Options:
- "tiny" (39M) - Fast, less accurate
- "base" (74M) - Balanced, recommended for development
- "small" (244M) - Good accuracy
- "medium" (769M) - Better accuracy
- "large" (1550M) - Best accuracy, slowest
"""
logger.info(f"Loading Whisper model: {model_size}")
logger.info("This may take a few minutes on first run (downloading model)...")
# Load Whisper model
# This downloads the model on first run
self.model = whisper.load_model(model_size)
self.model_size = model_size
logger.info(f"โ Whisper model '{model_size}' loaded successfully")
logger.info(f"Supported languages: 99+ (auto-detected)")
def transcribe_audio(
self,
audio_path: str,
language: Optional[str] = None
) -> Dict[str, Any]:
"""
Transcribe audio file in its original language.
Args:
audio_path: Path to audio file (mp3, wav, m4a, etc.)
language: Optional language code (e.g., "en", "ar"). If None, auto-detect.
Returns:
Dictionary with transcription results:
{
"text": "transcribed text",
"language": "en",
"language_name": "English",
"confidence": 0.95
}
"""
logger.info(f"Transcribing audio: {audio_path}")
# Transcribe with Whisper
result = self.model.transcribe(
audio_path,
language=language,
fp16=False # Use fp32 for better compatibility
)
transcription = {
"text": result["text"].strip(),
"language": result["language"],
"language_name": self._get_language_name(result["language"]),
"confidence": self._calculate_confidence(result)
}
logger.info(f"โ Transcribed: '{transcription['text'][:100]}...'")
logger.info(f" Language: {transcription['language_name']} ({transcription['language']})")
logger.info(f" Confidence: {transcription['confidence']:.2f}")
return transcription
def translate_to_english(self, audio_path: str) -> Dict[str, Any]:
"""
Transcribe audio and translate to English (if not already English).
This is optimized for the use case where you always want English output,
regardless of the input language.
Args:
audio_path: Path to audio file
Returns:
Dictionary with translation results:
{
"original_text": "ุงููุต ุงูุฃุตูู",
"english_text": "translated text",
"original_language": "ar",
"original_language_name": "Arabic",
"was_translated": true
}
"""
logger.info(f"Processing audio for English output: {audio_path}")
# First, transcribe in original language to detect it
original = self.model.transcribe(audio_path, fp16=False)
# Then translate to English
translated = self.model.transcribe(
audio_path,
task="translate", # This translates to English
fp16=False
)
result = {
"original_text": original["text"].strip(),
"english_text": translated["text"].strip(),
"original_language": original["language"],
"original_language_name": self._get_language_name(original["language"]),
"was_translated": original["language"] != "en"
}
if result["was_translated"]:
logger.info(f"โ Detected {result['original_language_name']}, translated to English")
logger.info(f" Original: '{result['original_text'][:100]}...'")
logger.info(f" English: '{result['english_text'][:100]}...'")
else:
logger.info(f"โ Already in English, no translation needed")
return result
def process_voice_query(self, audio_path: str) -> Dict[str, Any]:
"""
Complete pipeline: transcribe, translate if needed, return query text.
This is the main method for the voice assistant use case.
Args:
audio_path: Path to audio file
Returns:
Dictionary ready for division extraction:
{
"query": "english text for processing",
"original_text": "original text if different",
"language": "ar",
"language_name": "Arabic",
"was_translated": true,
"audio_duration": 5.2
}
"""
logger.info(f"Processing voice query: {audio_path}")
# Get audio duration
audio_info = whisper.load_audio(audio_path)
duration = len(audio_info) / whisper.audio.SAMPLE_RATE
# Translate to English (works for all languages)
result = self.translate_to_english(audio_path)
return {
"query": result["english_text"], # Always English for processing
"original_text": result["original_text"],
"language": result["original_language"],
"language_name": result["original_language_name"],
"was_translated": result["was_translated"],
"audio_duration": round(duration, 2)
}
def _get_language_name(self, lang_code: str) -> str:
"""Get full language name from code."""
language_names = {
"en": "English",
"ar": "Arabic",
"es": "Spanish",
"fr": "French",
"de": "German",
"zh": "Chinese",
"ja": "Japanese",
"ko": "Korean",
"ru": "Russian",
"pt": "Portuguese",
"it": "Italian",
"nl": "Dutch",
"tr": "Turkish",
"pl": "Polish",
"uk": "Ukrainian",
"vi": "Vietnamese",
"th": "Thai",
"hi": "Hindi",
"ur": "Urdu",
# Add more as needed
}
return language_names.get(lang_code, lang_code.upper())
def _calculate_confidence(self, whisper_result: Dict) -> float:
"""
Calculate confidence score from Whisper result.
Whisper doesn't directly provide confidence, so we estimate it
based on available metrics.
"""
# If segments are available, average their probabilities
if "segments" in whisper_result and whisper_result["segments"]:
avg_logprob = sum(s.get("avg_logprob", -1.0) for s in whisper_result["segments"])
avg_logprob /= len(whisper_result["segments"])
# Convert log probability to approximate confidence (0-1)
# logprob ranges from -inf to 0, typically -2 to 0 for good transcriptions
confidence = max(0.0, min(1.0, (avg_logprob + 2.0) / 2.0))
return round(confidence, 2)
# Default confidence
return 0.85
def save_uploaded_audio(self, audio_bytes: bytes, filename: str) -> str:
"""
Save uploaded audio file to temporary location.
Args:
audio_bytes: Audio file bytes
filename: Original filename
Returns:
Path to saved file
"""
# Create temp directory if it doesn't exist
temp_dir = Path(tempfile.gettempdir()) / "voice_assistant_uploads"
temp_dir.mkdir(exist_ok=True)
# Save file
file_extension = Path(filename).suffix
temp_file = temp_dir / f"upload_{os.urandom(8).hex()}{file_extension}"
temp_file.write_bytes(audio_bytes)
logger.info(f"Saved uploaded audio to: {temp_file}")
return str(temp_file)
def save_audio_array(self, audio_data, sample_rate: int) -> str:
"""
Save audio numpy array to temporary WAV file (for Gradio integration).
Args:
audio_data: Audio data as numpy array
sample_rate: Sample rate of the audio
Returns:
Path to saved WAV file
"""
import numpy as np
import scipy.io.wavfile as wavfile
# Create temp directory if it doesn't exist
temp_dir = Path(tempfile.gettempdir()) / "voice_assistant_uploads"
temp_dir.mkdir(exist_ok=True)
# Save as WAV file
temp_file = temp_dir / f"gradio_{os.urandom(8).hex()}.wav"
# Ensure audio_data is in the correct format
if isinstance(audio_data, np.ndarray):
# Normalize to int16 if needed
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
audio_data = (audio_data * 32767).astype(np.int16)
wavfile.write(str(temp_file), sample_rate, audio_data)
logger.info(f"Saved Gradio audio to: {temp_file}")
return str(temp_file)
def cleanup_temp_file(self, file_path: str):
"""Delete temporary audio file."""
try:
if os.path.exists(file_path):
os.remove(file_path)
logger.info(f"Cleaned up temp file: {file_path}")
except Exception as e:
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
|