Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import re
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
# Importing Hugging Face models and libraries
|
| 9 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
| 10 |
+
import hnswlib
|
| 11 |
+
import numpy as np
|
| 12 |
+
from typing import Iterator
|
| 13 |
+
|
| 14 |
+
from easyllm.clients import huggingface
|
| 15 |
+
|
| 16 |
+
# Set Hugging Face API key
|
| 17 |
+
huggingface.prompt_builder = "llama2"
|
| 18 |
+
huggingface.api_key = os.environ["HUGGINGFACE_TOKEN"]
|
| 19 |
+
|
| 20 |
+
# Constants
|
| 21 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 22 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 23 |
+
MAX_INPUT_TOKEN_LENGTH = 4000
|
| 24 |
+
EMBED_DIM = 1024
|
| 25 |
+
K = 10
|
| 26 |
+
EF = 100
|
| 27 |
+
SEARCH_INDEX = "search_index.bin"
|
| 28 |
+
EMBEDDINGS_FILE = "embeddings.npy"
|
| 29 |
+
DOCUMENT_DATASET = "chunked_data.parquet"
|
| 30 |
+
COSINE_THRESHOLD = 0.7
|
| 31 |
+
|
| 32 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
print("Running on device:", torch_device)
|
| 34 |
+
print("CPU threads:", torch.get_num_threads())
|
| 35 |
+
|
| 36 |
+
model_id = "meta-llama/Llama-2-70b-chat-hf"
|
| 37 |
+
biencoder = SentenceTransformer("intfloat/e5-large-v2", device=torch_device)
|
| 38 |
+
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2", max_length=512, device=torch_device)
|
| 39 |
+
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.environ["HUGGINGFACE_TOKEN"])
|
| 41 |
+
|
| 42 |
+
# Initialize Streamlit app
|
| 43 |
+
st.title("PEFT Docs QA Chatbot")
|
| 44 |
+
|
| 45 |
+
# Function to create QA prompt
|
| 46 |
+
def create_qa_prompt(query, relevant_chunks):
|
| 47 |
+
stuffed_context = " ".join(relevant_chunks)
|
| 48 |
+
return f"""\
|
| 49 |
+
Use the following pieces of context given in to answer the question at the end. \
|
| 50 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer. \
|
| 51 |
+
Keep the answer short and succinct.
|
| 52 |
+
|
| 53 |
+
Context: {stuffed_context}
|
| 54 |
+
Question: {query}
|
| 55 |
+
Helpful Answer: \
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
# Function to generate a Streamlit app response
|
| 59 |
+
def generate_response(message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k):
|
| 60 |
+
if max_new_tokens > MAX_MAX_NEW_TOKENS:
|
| 61 |
+
raise ValueError
|
| 62 |
+
history = history_with_input[:-1]
|
| 63 |
+
if len(history) > 0:
|
| 64 |
+
condensed_query = generate_condensed_query(message, history)
|
| 65 |
+
print(f"{condensed_query=}")
|
| 66 |
+
else:
|
| 67 |
+
condensed_query = message
|
| 68 |
+
query_embedding = create_query_embedding(condensed_query)
|
| 69 |
+
relevant_chunks = find_nearest_neighbors(query_embedding)
|
| 70 |
+
reranked_relevant_chunks = rerank_chunks_with_cross_encoder(condensed_query, relevant_chunks)
|
| 71 |
+
qa_prompt = create_qa_prompt(condensed_query, reranked_relevant_chunks)
|
| 72 |
+
print(f"{qa_prompt=}")
|
| 73 |
+
generator = get_completion(
|
| 74 |
+
qa_prompt,
|
| 75 |
+
system_prompt=system_prompt,
|
| 76 |
+
stream=True,
|
| 77 |
+
max_new_tokens=max_new_tokens,
|
| 78 |
+
temperature=temperature,
|
| 79 |
+
top_k=top_k,
|
| 80 |
+
top_p=top_p,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
output = ""
|
| 84 |
+
for idx, response in generator:
|
| 85 |
+
token = response["choices"][0]["delta"].get("content", "") or ""
|
| 86 |
+
output += token
|
| 87 |
+
if idx == 0:
|
| 88 |
+
history.append((message, output))
|
| 89 |
+
else:
|
| 90 |
+
history[-1] = (message, output)
|
| 91 |
+
|
| 92 |
+
history = [
|
| 93 |
+
(wrap_html_code(history[i][0].strip()), wrap_html_code(history[i][1].strip()))
|
| 94 |
+
for i in range(0, len(history))
|
| 95 |
+
]
|
| 96 |
+
return history
|
| 97 |
+
|
| 98 |
+
# Function to get input token length
|
| 99 |
+
def get_input_token_length(message, chat_history, system_prompt):
|
| 100 |
+
prompt = get_prompt(message, chat_history, system_prompt)
|
| 101 |
+
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"]
|
| 102 |
+
return input_ids.shape[-1]
|
| 103 |
+
|
| 104 |
+
# Function to create a condensed query
|
| 105 |
+
def generate_condensed_query(query, history):
|
| 106 |
+
chat_history = ""
|
| 107 |
+
for turn in history:
|
| 108 |
+
chat_history += f"Human: {turn[0]}\n"
|
| 109 |
+
chat_history += f"Assistant: {turn[1]}\n"
|
| 110 |
+
|
| 111 |
+
condense_question_prompt = create_condense_question_prompt(query, chat_history)
|
| 112 |
+
condensed_question = json.loads(get_completion(condense_question_prompt, max_new_tokens=64, temperature=0))
|
| 113 |
+
return condensed_question["question"]
|
| 114 |
+
|
| 115 |
+
# Function to load the HNSW index
|
| 116 |
+
def load_hnsw_index(index_file):
|
| 117 |
+
index = hnswlib.Index(space="ip", dim=EMBED_DIM)
|
| 118 |
+
index.load_index(index_file)
|
| 119 |
+
return index
|
| 120 |
+
|
| 121 |
+
# Function to create the HNSW index
|
| 122 |
+
def create_hnsw_index(embeddings_file, M=16, efC=100):
|
| 123 |
+
embeddings = np.load(embeddings_file)
|
| 124 |
+
num_dim = embeddings.shape[1]
|
| 125 |
+
ids = np.arange(embeddings.shape[0]
|
| 126 |
+
index = hnswlib.Index(space="ip", dim=num_dim)
|
| 127 |
+
index.init_index(max_elements=embeddings.shape[0], ef_construction=efC, M=M)
|
| 128 |
+
index.add_items(embeddings, ids)
|
| 129 |
+
return index
|
| 130 |
+
|
| 131 |
+
# Function to create a query embedding
|
| 132 |
+
def create_query_embedding(query):
|
| 133 |
+
embedding = biencoder.encode([query], normalize_embeddings=True)[0]
|
| 134 |
+
return embedding
|
| 135 |
+
|
| 136 |
+
# Function to find nearest neighbors
|
| 137 |
+
def find_nearest_neighbors(query_embedding):
|
| 138 |
+
search_index.set_ef(EF)
|
| 139 |
+
labels, distances = search_index.knn_query(query_embedding, k=K)
|
| 140 |
+
labels = [label for label, distance in zip(labels[0], distances[0]) if (1 - distance) >= COSINE_THRESHOLD]
|
| 141 |
+
relevant_chunks = data_df.iloc[labels]["chunk_content"].tolist()
|
| 142 |
+
return relevant_chunks
|
| 143 |
+
|
| 144 |
+
# Function to rerank chunks with the cross encoder
|
| 145 |
+
def rerank_chunks_with_cross_encoder(query, chunks):
|
| 146 |
+
pairs = [(query, chunk) for chunk in chunks]
|
| 147 |
+
scores = cross_encoder.predict(pairs)
|
| 148 |
+
sorted_chunks = [chunk for _, chunk in sorted(zip(scores, chunks), reverse=True)]
|
| 149 |
+
return sorted_chunks
|
| 150 |
+
|
| 151 |
+
# Function to wrap HTML code
|
| 152 |
+
def wrap_html_code(text):
|
| 153 |
+
pattern = r"<.*?>"
|
| 154 |
+
matches = re.findall(pattern, text)
|
| 155 |
+
if len(matches) > 0:
|
| 156 |
+
return f"```{text}```"
|
| 157 |
+
else:
|
| 158 |
+
return text
|
| 159 |
+
|
| 160 |
+
# Load the HNSW index for the PEFT docs
|
| 161 |
+
search_index = create_hnsw_index(EMBEDDINGS_FILE) # load_hnsw_index(SEARCH_INDEX)
|
| 162 |
+
data_df = pd.read_parquet(DOCUMENT_DATASET).reset_index()
|
| 163 |
+
|
| 164 |
+
# Streamlit UI
|
| 165 |
+
st.markdown("Welcome to the PEFT Docs QA Chatbot.")
|
| 166 |
+
message = st.text_input("You:", "")
|
| 167 |
+
history_with_input = []
|
| 168 |
+
system_prompt = st.text_area("System prompt", DEFAULT_SYSTEM_PROMPT)
|
| 169 |
+
max_new_tokens = st.slider("Max new tokens", 1, MAX_MAX_NEW_TOKENS, DEFAULT_MAX_NEW_TOKENS)
|
| 170 |
+
temperature = st.slider("Temperature", 0.1, 4.0, 0.2, 0.1)
|
| 171 |
+
top_p = st.slider("Top-p (nucleus sampling)", 0.05 , 1.0, 0.05)
|
| 172 |
+
top_k = st.slider("Top-k", 1, 1000, 50)
|
| 173 |
+
|
| 174 |
+
if st.button("Submit"):
|
| 175 |
+
if message:
|
| 176 |
+
try:
|
| 177 |
+
history_with_input, response = generate_response(
|
| 178 |
+
message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k
|
| 179 |
+
)
|
| 180 |
+
st.write("Chatbot:", response[-1][1])
|
| 181 |
+
except Exception as e:
|
| 182 |
+
st.error(f"An error occurred: {e}")
|
| 183 |
+
else:
|
| 184 |
+
st.warning("Please enter a message.")
|
| 185 |
+
|
| 186 |
+
if st.button("Retry"):
|
| 187 |
+
if history_with_input:
|
| 188 |
+
history_with_input, _ = generate_response(
|
| 189 |
+
message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k
|
| 190 |
+
)
|
| 191 |
+
st.write("Chatbot:", history_with_input[-1][1])
|
| 192 |
+
else:
|
| 193 |
+
st.warning("No previous message to retry.")
|
| 194 |
+
|
| 195 |
+
if st.button("Undo"):
|
| 196 |
+
if history_with_input:
|
| 197 |
+
_, last_message = history_with_input.pop()
|
| 198 |
+
st.text_area("You:", last_message, height=50)
|
| 199 |
+
else:
|
| 200 |
+
st.warning("No previous message to undo.")
|
| 201 |
+
|
| 202 |
+
if st.button("Clear"):
|
| 203 |
+
message = ""
|
| 204 |
+
history_with_input = []
|
| 205 |
+
system_prompt = DEFAULT_SYSTEM_PROMPT
|
| 206 |
+
max_new_tokens = DEFAULT_MAX_NEW_TOKENS
|
| 207 |
+
temperature = 0.2
|
| 208 |
+
top_p = 0.95
|
| 209 |
+
top_k = 50
|
| 210 |
+
|
| 211 |
+
st.sidebar.markdown(
|
| 212 |
+
"This is a Streamlit app for the PEFT Docs QA Chatbot. Enter your message, configure advanced options, and interact with the chatbot."
|
| 213 |
+
)
|
| 214 |
+
|