Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,43 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
-
|
| 5 |
def display_csv(file_path, columns_to_display):
|
| 6 |
# Load the CSV file using pandas
|
| 7 |
df = pd.read_csv(file_path)
|
|
|
|
| 8 |
# Select only the specified columns
|
| 9 |
df_selected_columns = df[columns_to_display].sort_values(by=['avg_score'], ascending=False).reset_index(drop=True)
|
|
|
|
| 10 |
# Display the selected columns as a table
|
| 11 |
st.dataframe(df_selected_columns, height=500, width=1000)
|
| 12 |
|
| 13 |
def main():
|
| 14 |
-
# Hardcoded file
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
# Columns to display
|
| 17 |
columns_to_display = [
|
| 18 |
-
"model_name", "pretrained", "avg_score", "image_time", "text_time",
|
| 19 |
-
"image_shape", "text_shape",
|
| 20 |
-
"output shape",
|
| 21 |
"params (M)", "FLOPs (B)"
|
| 22 |
-
]
|
| 23 |
-
|
| 24 |
# Add header and description
|
| 25 |
st.header("CLIP benchmarks - retrieval and inference")
|
| 26 |
-
st.write("CLIP benchmarks for inference and retrieval performance. Image size, context length and output dimensions are also included. Retrieval performance comes from https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_retrieval_results.csv.Tested with A10G, CUDA 12.1, Torch 2.1.0")
|
| 27 |
-
|
| 28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
display_csv(file_path, columns_to_display)
|
| 30 |
|
| 31 |
# Custom CSS to make the app full screen
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
|
|
|
|
| 4 |
def display_csv(file_path, columns_to_display):
|
| 5 |
# Load the CSV file using pandas
|
| 6 |
df = pd.read_csv(file_path)
|
| 7 |
+
|
| 8 |
# Select only the specified columns
|
| 9 |
df_selected_columns = df[columns_to_display].sort_values(by=['avg_score'], ascending=False).reset_index(drop=True)
|
| 10 |
+
|
| 11 |
# Display the selected columns as a table
|
| 12 |
st.dataframe(df_selected_columns, height=500, width=1000)
|
| 13 |
|
| 14 |
def main():
|
| 15 |
+
# Hardcoded file paths
|
| 16 |
+
file_path1 = "merged-averaged-model_timings_2.1.0_12.1_NVIDIA_A10G_False.csv"
|
| 17 |
+
file_path2 = "merged-averaged-model_timings_2.1.0_12.1_Tesla_T4_False.csv" # Replace with the path to your second CSV file
|
| 18 |
+
|
| 19 |
# Columns to display
|
| 20 |
columns_to_display = [
|
| 21 |
+
"model_name", "pretrained", "avg_score", "image_time", "text_time",
|
| 22 |
+
"image_shape", "text_shape",
|
| 23 |
+
"output shape",
|
| 24 |
"params (M)", "FLOPs (B)"
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
# Add header and description
|
| 28 |
st.header("CLIP benchmarks - retrieval and inference")
|
| 29 |
+
st.write("CLIP benchmarks for inference and retrieval performance. Image size, context length and output dimensions are also included. Retrieval performance comes from https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_retrieval_results.csv. Tested with A10G, CUDA 12.1, Torch 2.1.0")
|
| 30 |
+
|
| 31 |
+
# Add radio button to select the CSV file
|
| 32 |
+
selected_file = st.radio("Select results for a specific GPU", ("GPU: A10g", "GPU: T4"))
|
| 33 |
+
|
| 34 |
+
# Determine the file path based on the selected file
|
| 35 |
+
if selected_file == "GPU: A10g":
|
| 36 |
+
file_path = file_path1
|
| 37 |
+
else:
|
| 38 |
+
file_path = file_path2
|
| 39 |
+
|
| 40 |
+
# Call the display_csv function with the selected file path and columns
|
| 41 |
display_csv(file_path, columns_to_display)
|
| 42 |
|
| 43 |
# Custom CSS to make the app full screen
|