Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from typing import Dict, List, Union
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import re
|
| 7 |
+
from collections import Counter
|
| 8 |
+
|
| 9 |
+
# Initialize lightweight embedding model
|
| 10 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 11 |
+
|
| 12 |
+
def semantic_similarity(text1: str, text2: str) -> Dict[str, Union[float, str]]:
|
| 13 |
+
"""
|
| 14 |
+
Calculate semantic similarity between two texts using embeddings.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
text1 (str): First text to compare
|
| 18 |
+
text2 (str): Second text to compare
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
dict: Similarity score and analysis between the two texts
|
| 22 |
+
"""
|
| 23 |
+
if not text1.strip() or not text2.strip():
|
| 24 |
+
return {
|
| 25 |
+
"similarity_score": 0.0,
|
| 26 |
+
"analysis": "empty text provided",
|
| 27 |
+
"status": "error"
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
# Generate embeddings
|
| 32 |
+
embeddings = model.encode([text1, text2])
|
| 33 |
+
|
| 34 |
+
# Calculate cosine similarity
|
| 35 |
+
similarity = cosine_similarity(embeddings[0].reshape(1, -1), embeddings[1].reshape(1, -1))[0][0]
|
| 36 |
+
# Analysis based on similarity score
|
| 37 |
+
if similarity >= 0.8:
|
| 38 |
+
analysis = "very similar"
|
| 39 |
+
elif similarity >= 0.6:
|
| 40 |
+
analysis = "similar"
|
| 41 |
+
elif similarity >= 0.4:
|
| 42 |
+
analysis = "somewhat related"
|
| 43 |
+
elif similarity >= 0.2:
|
| 44 |
+
analysis = "slightly related"
|
| 45 |
+
else:
|
| 46 |
+
analysis = "not related"
|
| 47 |
+
|
| 48 |
+
return {
|
| 49 |
+
"similarity_score": round(float(similarity), 4),
|
| 50 |
+
"analysis": analysis,
|
| 51 |
+
"status": "success",
|
| 52 |
+
"text1_length": len(text1),
|
| 53 |
+
"text2_length": len(text2)
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return {
|
| 58 |
+
"similarity_score": 0.0,
|
| 59 |
+
"analysis": f"error: {str(e)}",
|
| 60 |
+
"status": "error"
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
def find_similar_sentences(query: str, document: str, top_k: int = 3) -> Dict[str, Union[List, str, int]]:
|
| 64 |
+
"""
|
| 65 |
+
Find the most semantically similar sentences in a document to a query.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
query (str): Search query
|
| 69 |
+
document (str): Document to search within
|
| 70 |
+
top_k (int): Number of top similar sentences to return
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
dict: Most similar sentences with similarity scores
|
| 74 |
+
"""
|
| 75 |
+
if not query.strip() or not document.strip():
|
| 76 |
+
return {
|
| 77 |
+
"status": "error",
|
| 78 |
+
"message": "Query and document cannot be empty",
|
| 79 |
+
"results": []
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
try: # Split document into sentences
|
| 83 |
+
sentences = re.split(r'[.!?]+', document)
|
| 84 |
+
sentences = [s.strip() for s in sentences if s.strip() and len(s.strip()) > 10]
|
| 85 |
+
|
| 86 |
+
if not sentences:
|
| 87 |
+
return {
|
| 88 |
+
"status": "error",
|
| 89 |
+
"message": "No valid sentences found in document",
|
| 90 |
+
"results": []
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# Generate embeddings
|
| 94 |
+
query_embedding = model.encode([query])
|
| 95 |
+
sentence_embeddings = model.encode(sentences)
|
| 96 |
+
|
| 97 |
+
# Calculate similarities
|
| 98 |
+
similarities = cosine_similarity(query_embedding, sentence_embeddings)[0]
|
| 99 |
+
|
| 100 |
+
# Get top-k results
|
| 101 |
+
top_indices = np.argsort(similarities)[::-1][:top_k]
|
| 102 |
+
|
| 103 |
+
results = []
|
| 104 |
+
for i, idx in enumerate(top_indices):
|
| 105 |
+
results.append({
|
| 106 |
+
"rank": i + 1,
|
| 107 |
+
"similarity_score": round(float(similarities[idx]), 4),
|
| 108 |
+
"sentence": sentences[idx],
|
| 109 |
+
"sentence_length": len(sentences[idx])
|
| 110 |
+
})
|
| 111 |
+
|
| 112 |
+
return {
|
| 113 |
+
"status": "success",
|
| 114 |
+
"message": f"Found {len(results)} similar sentences",
|
| 115 |
+
"results": results,
|
| 116 |
+
"total_sentences": len(sentences),
|
| 117 |
+
"query": query
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
return {
|
| 122 |
+
"status": "error",
|
| 123 |
+
"message": f"Error: {str(e)}",
|
| 124 |
+
"results": []
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
def extract_semantic_keywords(text: str, max_keywords: int = 10) -> Dict[str, Union[List, str, int]]:
|
| 128 |
+
"""
|
| 129 |
+
Extract keywords using TF-IDF and semantic analysis.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
text (str): Text to extract keywords from
|
| 133 |
+
max_keywords (int): Maximum number of keywords to extract
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
dict: Extracted keywords with relevance scores
|
| 137 |
+
"""
|
| 138 |
+
if not text.strip():
|
| 139 |
+
return {
|
| 140 |
+
"status": "error",
|
| 141 |
+
"message": "Text cannot be empty",
|
| 142 |
+
"keywords": []
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
# Clean and tokenize
|
| 147 |
+
words = re.findall(r'\b[a-zA-Z]{3,}\b', text.lower())
|
| 148 |
+
|
| 149 |
+
# Stop words
|
| 150 |
+
stop_words = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'between', 'among', 'this', 'that', 'these', 'those', 'is', 'are', 'was', 'were', 'been', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should', 'may', 'might', 'can', 'must', 'shall', 'you', 'your', 'yours', 'yourself', 'yourselves'}
|
| 151 |
+
|
| 152 |
+
# Filter out stop words and short words
|
| 153 |
+
filtered_words = [word for word in words if word not in stop_words and len(word) > 2]
|
| 154 |
+
|
| 155 |
+
# Count frequencies
|
| 156 |
+
word_freq = Counter(filtered_words)
|
| 157 |
+
|
| 158 |
+
# Get top words by frequency
|
| 159 |
+
top_words = word_freq.most_common(max_keywords * 2) # Get more for filtering
|
| 160 |
+
|
| 161 |
+
# Calculate relevance scores (simple TF)
|
| 162 |
+
total_words = len(filtered_words)
|
| 163 |
+
keywords = []
|
| 164 |
+
|
| 165 |
+
for word, freq in top_words[:max_keywords]:
|
| 166 |
+
relevance = freq / total_words
|
| 167 |
+
keywords.append({
|
| 168 |
+
"keyword": word,
|
| 169 |
+
"frequency": freq,
|
| 170 |
+
"relevance_score": round(relevance, 4),
|
| 171 |
+
"tf_score": round(freq / total_words * 100, 2) # Term frequency as percentage
|
| 172 |
+
})
|
| 173 |
+
|
| 174 |
+
return {
|
| 175 |
+
"status": "success",
|
| 176 |
+
"message": f"Extracted {len(keywords)} keywords",
|
| 177 |
+
"keywords": keywords,
|
| 178 |
+
"total_words": total_words,
|
| 179 |
+
"unique_words": len(word_freq),
|
| 180 |
+
"text_length": len(text)
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
except Exception as e:
|
| 184 |
+
return {
|
| 185 |
+
"status": "error",
|
| 186 |
+
"message": f"Error: {str(e)}",
|
| 187 |
+
"keywords": []
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
def semantic_search_in_text(query: str, documents_text: str, max_results: int = 5) -> Dict[str, Union[List, str, int]]:
|
| 191 |
+
"""
|
| 192 |
+
Search for semantically similar content within provided text documents.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
query (str): Search query
|
| 196 |
+
documents_text (str): Multiple documents separated by newlines or paragraphs
|
| 197 |
+
max_results (int): Maximum number of results to return
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
dict: Search results with similarity scores
|
| 201 |
+
"""
|
| 202 |
+
if not query.strip() or not documents_text.strip():
|
| 203 |
+
return {
|
| 204 |
+
"status": "error",
|
| 205 |
+
"message": "Query and documents cannot be empty",
|
| 206 |
+
"results": []
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
try:
|
| 210 |
+
# Split into paragraphs/documents
|
| 211 |
+
paragraphs = [p.strip() for p in documents_text.split('\n\n') if p.strip() and len(p.strip()) > 20]
|
| 212 |
+
|
| 213 |
+
if not paragraphs:
|
| 214 |
+
# Fall back to splitting by single newlines
|
| 215 |
+
paragraphs = [p.strip() for p in documents_text.split('\n') if p.strip() and len(p.strip()) > 20]
|
| 216 |
+
|
| 217 |
+
if not paragraphs:
|
| 218 |
+
return {
|
| 219 |
+
"status": "error",
|
| 220 |
+
"message": "No valid paragraphs found in documents",
|
| 221 |
+
"results": []
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
# Generate embeddings
|
| 225 |
+
query_embedding = model.encode([query])
|
| 226 |
+
paragraph_embeddings = model.encode(paragraphs)
|
| 227 |
+
|
| 228 |
+
# Calculate similarities
|
| 229 |
+
similarities = cosine_similarity(query_embedding, paragraph_embeddings)[0]
|
| 230 |
+
|
| 231 |
+
# Get top results
|
| 232 |
+
top_indices = np.argsort(similarities)[::-1][:max_results]
|
| 233 |
+
|
| 234 |
+
results = []
|
| 235 |
+
for i, idx in enumerate(top_indices):
|
| 236 |
+
results.append({
|
| 237 |
+
"rank": i + 1,
|
| 238 |
+
"similarity_score": round(float(similarities[idx]), 4),
|
| 239 |
+
"content": paragraphs[idx],
|
| 240 |
+
"content_length": len(paragraphs[idx])
|
| 241 |
+
})
|
| 242 |
+
|
| 243 |
+
return {
|
| 244 |
+
"status": "success",
|
| 245 |
+
"message": f"Found {len(results)} relevant paragraphs",
|
| 246 |
+
"results": results,
|
| 247 |
+
"total_documents": len(paragraphs),
|
| 248 |
+
"query": query
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
except Exception as e:
|
| 252 |
+
return {
|
| 253 |
+
"status": "error",
|
| 254 |
+
"message": f"Error: {str(e)}",
|
| 255 |
+
"results": []
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
# Create Gradio interfaces
|
| 259 |
+
demo_similarity = gr.Interface(
|
| 260 |
+
fn=semantic_similarity,
|
| 261 |
+
inputs=[
|
| 262 |
+
gr.Textbox(placeholder="Enter first text...", label="Text 1", lines=3, value="I love machine learning and AI"),
|
| 263 |
+
gr.Textbox(placeholder="Enter second text...", label="Text 2", lines=3, value="Artificial intelligence and ML are fascinating")
|
| 264 |
+
],
|
| 265 |
+
outputs=gr.JSON(),
|
| 266 |
+
title="🔗 Semantic Similarity",
|
| 267 |
+
description="Calculate semantic similarity between two texts using embeddings"
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
demo_find_similar = gr.Interface(
|
| 271 |
+
fn=find_similar_sentences,
|
| 272 |
+
inputs=[
|
| 273 |
+
gr.Textbox(placeholder="Search query...", label="Query", value="machine learning"),
|
| 274 |
+
gr.Textbox(placeholder="Document text...", label="Document", lines=5, value="Machine learning is a subset of AI. Deep learning uses neural networks. Natural language processing handles text."),
|
| 275 |
+
gr.Slider(1, 10, value=3, label="Number of Results")
|
| 276 |
+
],
|
| 277 |
+
outputs=gr.JSON(),
|
| 278 |
+
title="🎯 Find Similar Sentences",
|
| 279 |
+
description="Find sentences in a document most similar to your query"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
demo_keywords = gr.Interface(
|
| 283 |
+
fn=extract_semantic_keywords,
|
| 284 |
+
inputs=[
|
| 285 |
+
gr.Textbox(placeholder="Text to extract keywords from...", label="Text", lines=5, value="Machine learning and artificial intelligence are transforming technology"),
|
| 286 |
+
gr.Slider(1, 20, value=10, label="Max Keywords")
|
| 287 |
+
],
|
| 288 |
+
outputs=gr.JSON(),
|
| 289 |
+
title="🏷️ Keyword Extraction",
|
| 290 |
+
description="Extract relevant keywords and phrases from text"
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
demo_search = gr.Interface(
|
| 294 |
+
fn=semantic_search_in_text,
|
| 295 |
+
inputs=[
|
| 296 |
+
gr.Textbox(placeholder="Search query...", label="Search Query", value="neural networks"),
|
| 297 |
+
gr.Textbox(placeholder="Documents (separated by empty lines)...", label="Documents", lines=8, value="Deep learning uses neural networks.\n\nMachine learning algorithms learn patterns.\n\nAI systems can process natural language."),
|
| 298 |
+
gr.Slider(1, 10, value=5, label="Max Results")
|
| 299 |
+
],
|
| 300 |
+
outputs=gr.JSON(),
|
| 301 |
+
title="🔍 Semantic Text Search",
|
| 302 |
+
description="Search for relevant content within provided documents using semantic similarity"
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# Combine all interfaces
|
| 306 |
+
demo = gr.TabbedInterface(
|
| 307 |
+
[demo_similarity, demo_find_similar, demo_keywords, demo_search],
|
| 308 |
+
["Similarity", "Find Sentences", "Keywords", "Search in Text"],
|
| 309 |
+
title="🧠 Semantic Analysis Suite (Stateless)"
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
if __name__ == "__main__":
|
| 313 |
+
demo.launch(mcp_server=True)
|