Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,44 +1,110 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from threading import Thread
|
| 5 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# --- CONFIGURATION ---
|
| 8 |
-
|
|
|
|
| 9 |
print("Loading TinyLlama...")
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 11 |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 12 |
|
| 13 |
-
#
|
| 14 |
print("Loading Embedding Model...")
|
| 15 |
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 16 |
|
| 17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 19 |
model = model.to(device)
|
|
|
|
| 20 |
|
| 21 |
# --- GLOBAL STATE FOR RAG ---
|
| 22 |
KNOWLEDGE_CHUNKS = []
|
| 23 |
KNOWLEDGE_EMBEDDINGS = None
|
| 24 |
RAG_ENABLED = False
|
| 25 |
|
| 26 |
-
# System content
|
| 27 |
DEFAULT_SYSTEM_PROMPT = """You are TinyLlama, a friendly and helpful AI assistant.
|
| 28 |
-
You are based on the TinyLlama-1.1B-Chat model
|
| 29 |
-
concise answers to various questions."""
|
| 30 |
-
|
| 31 |
SYSTEM_CONTENT = DEFAULT_SYSTEM_PROMPT
|
| 32 |
|
| 33 |
-
# Defining a custom stopping criteria class for the model's text generation.
|
| 34 |
class StopOnTokens(StoppingCriteria):
|
| 35 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 36 |
-
stop_ids = [2]
|
| 37 |
for stop_id in stop_ids:
|
| 38 |
-
if input_ids[0][-1] == stop_id:
|
| 39 |
return True
|
| 40 |
return False
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# --- RAG FUNCTIONS ---
|
| 43 |
|
| 44 |
def process_knowledge_base(text_content):
|
|
@@ -49,15 +115,14 @@ def process_knowledge_base(text_content):
|
|
| 49 |
RAG_ENABLED = False
|
| 50 |
return "Knowledge base cleared.", False
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
# For a real app, use a proper text splitter (like RecursiveCharacterTextSplitter)
|
| 54 |
raw_chunks = text_content.split('\n\n')
|
| 55 |
chunks = [chunk.strip() for chunk in raw_chunks if len(chunk.strip()) > 20]
|
| 56 |
|
| 57 |
if not chunks:
|
| 58 |
return "No valid text found to process.", False
|
| 59 |
|
| 60 |
-
#
|
| 61 |
try:
|
| 62 |
embeddings = embedder.encode(chunks, convert_to_tensor=True)
|
| 63 |
|
|
@@ -65,27 +130,21 @@ def process_knowledge_base(text_content):
|
|
| 65 |
KNOWLEDGE_EMBEDDINGS = embeddings
|
| 66 |
RAG_ENABLED = True
|
| 67 |
|
| 68 |
-
return f"
|
| 69 |
except Exception as e:
|
| 70 |
return f"Error creating embeddings: {str(e)}", False
|
| 71 |
|
| 72 |
def retrieve_context(query, top_k=3):
|
| 73 |
-
"""Finds relevant chunks for the query."""
|
| 74 |
if not RAG_ENABLED or KNOWLEDGE_EMBEDDINGS is None:
|
| 75 |
return ""
|
| 76 |
|
| 77 |
-
# Encode user query
|
| 78 |
query_embedding = embedder.encode(query, convert_to_tensor=True)
|
| 79 |
-
|
| 80 |
-
# Compute Cosine Similarity
|
| 81 |
cos_scores = util.cos_sim(query_embedding, KNOWLEDGE_EMBEDDINGS)[0]
|
| 82 |
-
|
| 83 |
-
# Get top_k results
|
| 84 |
top_results = torch.topk(cos_scores, k=min(top_k, len(KNOWLEDGE_CHUNKS)))
|
| 85 |
|
| 86 |
retrieved_text = []
|
| 87 |
for score, idx in zip(top_results[0], top_results[1]):
|
| 88 |
-
if score > 0.
|
| 89 |
retrieved_text.append(KNOWLEDGE_CHUNKS[idx])
|
| 90 |
|
| 91 |
return "\n\n".join(retrieved_text)
|
|
@@ -93,30 +152,23 @@ def retrieve_context(query, top_k=3):
|
|
| 93 |
# --- PREDICTION FUNCTION ---
|
| 94 |
|
| 95 |
def predict(message, history, system_content=None):
|
| 96 |
-
# Use custom system content if provided, otherwise use default
|
| 97 |
current_system_content = system_content if system_content else SYSTEM_CONTENT
|
| 98 |
|
| 99 |
-
# --- RAG LOGIC ---
|
| 100 |
context = ""
|
| 101 |
if RAG_ENABLED:
|
| 102 |
retrieved = retrieve_context(message)
|
| 103 |
if retrieved:
|
| 104 |
-
context = f"\nUse
|
| 105 |
-
# We modify the prompt to include the context
|
| 106 |
message = f"{context}\nQuestion: {message}"
|
| 107 |
-
# -----------------
|
| 108 |
|
| 109 |
history_transformer_format = history + [[message, ""]]
|
| 110 |
stop = StopOnTokens()
|
| 111 |
|
| 112 |
-
# Formatting the input for the model with system content
|
| 113 |
system_prompt = f"<|system|>\n{current_system_content}</s>"
|
| 114 |
conversation = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]])
|
| 115 |
for item in history_transformer_format])
|
| 116 |
|
| 117 |
messages = system_prompt + conversation
|
| 118 |
-
|
| 119 |
-
# Tokenize
|
| 120 |
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
| 121 |
|
| 122 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
|
@@ -132,103 +184,104 @@ def predict(message, history, system_content=None):
|
|
| 132 |
stopping_criteria=StoppingCriteriaList([stop])
|
| 133 |
)
|
| 134 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 135 |
-
t.start()
|
| 136 |
|
| 137 |
partial_message = ""
|
| 138 |
for new_token in streamer:
|
| 139 |
partial_message += new_token
|
| 140 |
-
if '</s>' in partial_message:
|
| 141 |
break
|
| 142 |
yield partial_message
|
| 143 |
|
| 144 |
-
# --- UI
|
| 145 |
|
| 146 |
-
def
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
return
|
| 151 |
-
|
| 152 |
-
|
|
|
|
| 153 |
|
| 154 |
-
def
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
# --- GRADIO INTERFACE ---
|
| 160 |
|
| 161 |
-
with gr.Blocks(title="TinyLlama
|
| 162 |
-
gr.Markdown("# 🦙 TinyLlama RAG
|
| 163 |
-
gr.Markdown("Chat with TinyLlama
|
| 164 |
|
| 165 |
with gr.Row():
|
| 166 |
# Left Column: Chat
|
| 167 |
with gr.Column(scale=2):
|
| 168 |
-
gr.Markdown("### 💬 Chat Interface")
|
| 169 |
chat_interface = gr.ChatInterface(
|
| 170 |
predict,
|
| 171 |
-
examples=['
|
| 172 |
-
cache_examples=False
|
| 173 |
)
|
| 174 |
|
| 175 |
-
# Right Column:
|
| 176 |
with gr.Column(scale=1):
|
| 177 |
|
| 178 |
-
# RAG
|
| 179 |
-
with gr.Accordion("📚
|
| 180 |
-
|
|
|
|
| 181 |
kb_input = gr.Textbox(
|
| 182 |
-
label="
|
| 183 |
-
lines=
|
| 184 |
-
placeholder="
|
| 185 |
-
|
| 186 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
with gr.Row():
|
| 188 |
-
process_btn = gr.Button("Build Knowledge Base", variant="primary")
|
| 189 |
rag_status = gr.Checkbox(label="RAG Active", interactive=False, value=False)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
# System Prompt Section
|
| 193 |
-
with gr.Accordion("⚙️ System Personality", open=False):
|
| 194 |
-
system_content_input = gr.Textbox(
|
| 195 |
-
label="System Content",
|
| 196 |
-
value=SYSTEM_CONTENT,
|
| 197 |
-
lines=4
|
| 198 |
-
)
|
| 199 |
-
with gr.Row():
|
| 200 |
-
update_btn = gr.Button("Update System")
|
| 201 |
-
reset_btn = gr.Button("Reset")
|
| 202 |
-
system_status = gr.Textbox(label="Status", interactive=False)
|
| 203 |
-
|
| 204 |
-
gr.Markdown("### ℹ️ About")
|
| 205 |
-
gr.Markdown("""
|
| 206 |
-
**Model:** TinyLlama-1.1B
|
| 207 |
-
**RAG:** sentence-transformers (all-MiniLM-L6-v2)
|
| 208 |
-
|
| 209 |
-
**How to use RAG:**
|
| 210 |
-
1. Paste text into 'Reference Text'.
|
| 211 |
-
2. Click 'Build Knowledge Base'.
|
| 212 |
-
3. Ask questions about that text.
|
| 213 |
-
""")
|
| 214 |
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
)
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
| 226 |
)
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
| 231 |
)
|
| 232 |
|
| 233 |
if __name__ == "__main__":
|
| 234 |
-
demo.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import (
|
| 4 |
+
AutoModelForCausalLM,
|
| 5 |
+
AutoTokenizer,
|
| 6 |
+
StoppingCriteria,
|
| 7 |
+
StoppingCriteriaList,
|
| 8 |
+
TextIteratorStreamer,
|
| 9 |
+
BlipProcessor,
|
| 10 |
+
BlipForConditionalGeneration
|
| 11 |
+
)
|
| 12 |
from threading import Thread
|
| 13 |
from sentence_transformers import SentenceTransformer, util
|
| 14 |
+
import requests
|
| 15 |
+
from bs4 import BeautifulSoup
|
| 16 |
+
from PIL import Image
|
| 17 |
|
| 18 |
# --- CONFIGURATION ---
|
| 19 |
+
|
| 20 |
+
# 1. LLM: TinyLlama
|
| 21 |
print("Loading TinyLlama...")
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 23 |
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 24 |
|
| 25 |
+
# 2. Embedding Model: For Text RAG
|
| 26 |
print("Loading Embedding Model...")
|
| 27 |
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
| 28 |
|
| 29 |
+
# 3. Vision Model: BLIP (for Image to Text)
|
| 30 |
+
# We use this to convert images into text descriptions so TinyLlama can "read" them.
|
| 31 |
+
print("Loading Vision Model (BLIP)...")
|
| 32 |
+
vision_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 33 |
+
vision_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 34 |
+
|
| 35 |
+
# Device Setup
|
| 36 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 37 |
model = model.to(device)
|
| 38 |
+
vision_model = vision_model.to(device)
|
| 39 |
|
| 40 |
# --- GLOBAL STATE FOR RAG ---
|
| 41 |
KNOWLEDGE_CHUNKS = []
|
| 42 |
KNOWLEDGE_EMBEDDINGS = None
|
| 43 |
RAG_ENABLED = False
|
| 44 |
|
| 45 |
+
# System content
|
| 46 |
DEFAULT_SYSTEM_PROMPT = """You are TinyLlama, a friendly and helpful AI assistant.
|
| 47 |
+
You are based on the TinyLlama-1.1B-Chat model."""
|
|
|
|
|
|
|
| 48 |
SYSTEM_CONTENT = DEFAULT_SYSTEM_PROMPT
|
| 49 |
|
|
|
|
| 50 |
class StopOnTokens(StoppingCriteria):
|
| 51 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 52 |
+
stop_ids = [2]
|
| 53 |
for stop_id in stop_ids:
|
| 54 |
+
if input_ids[0][-1] == stop_id:
|
| 55 |
return True
|
| 56 |
return False
|
| 57 |
|
| 58 |
+
# --- NEW TOOL FUNCTIONS ---
|
| 59 |
+
|
| 60 |
+
def scrape_wikifandom(url):
|
| 61 |
+
"""Scrapes text content from a WikiFandom page."""
|
| 62 |
+
if "fandom.com" not in url:
|
| 63 |
+
return "Error: Please provide a valid URL containing 'fandom.com'"
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
headers = {'User-Agent': 'Mozilla/5.0'}
|
| 67 |
+
response = requests.get(url, headers=headers)
|
| 68 |
+
if response.status_code != 200:
|
| 69 |
+
return f"Error: Failed to fetch page (Status {response.status_code})"
|
| 70 |
+
|
| 71 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 72 |
+
|
| 73 |
+
# Fandom usually puts the main article text in 'mw-parser-output'
|
| 74 |
+
content_div = soup.find('div', class_='mw-parser-output')
|
| 75 |
+
|
| 76 |
+
if not content_div:
|
| 77 |
+
# Fallback for some wiki layouts
|
| 78 |
+
content_div = soup.find('div', id='content')
|
| 79 |
+
|
| 80 |
+
if not content_div:
|
| 81 |
+
return "Error: Could not parse content from this Fandom page."
|
| 82 |
+
|
| 83 |
+
# Extract paragraphs
|
| 84 |
+
paragraphs = content_div.find_all('p')
|
| 85 |
+
text_content = "\n\n".join([p.get_text() for p in paragraphs if len(p.get_text()) > 50])
|
| 86 |
+
|
| 87 |
+
return text_content
|
| 88 |
+
except Exception as e:
|
| 89 |
+
return f"Error scraping URL: {str(e)}"
|
| 90 |
+
|
| 91 |
+
def process_image_to_text(image):
|
| 92 |
+
"""Generates a caption for an image using BLIP."""
|
| 93 |
+
if image is None:
|
| 94 |
+
return ""
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
# Prepare image
|
| 98 |
+
inputs = vision_processor(image, return_tensors="pt").to(device)
|
| 99 |
+
|
| 100 |
+
# Generate caption
|
| 101 |
+
out = vision_model.generate(**inputs, max_new_tokens=50)
|
| 102 |
+
caption = vision_processor.decode(out[0], skip_special_tokens=True)
|
| 103 |
+
|
| 104 |
+
return f"Image Context: The user uploaded an image that shows {caption}."
|
| 105 |
+
except Exception as e:
|
| 106 |
+
return f"Error processing image: {str(e)}"
|
| 107 |
+
|
| 108 |
# --- RAG FUNCTIONS ---
|
| 109 |
|
| 110 |
def process_knowledge_base(text_content):
|
|
|
|
| 115 |
RAG_ENABLED = False
|
| 116 |
return "Knowledge base cleared.", False
|
| 117 |
|
| 118 |
+
# Chunking
|
|
|
|
| 119 |
raw_chunks = text_content.split('\n\n')
|
| 120 |
chunks = [chunk.strip() for chunk in raw_chunks if len(chunk.strip()) > 20]
|
| 121 |
|
| 122 |
if not chunks:
|
| 123 |
return "No valid text found to process.", False
|
| 124 |
|
| 125 |
+
# Create Embeddings
|
| 126 |
try:
|
| 127 |
embeddings = embedder.encode(chunks, convert_to_tensor=True)
|
| 128 |
|
|
|
|
| 130 |
KNOWLEDGE_EMBEDDINGS = embeddings
|
| 131 |
RAG_ENABLED = True
|
| 132 |
|
| 133 |
+
return f"Indexed {len(chunks)} chunks. RAG Ready.", True
|
| 134 |
except Exception as e:
|
| 135 |
return f"Error creating embeddings: {str(e)}", False
|
| 136 |
|
| 137 |
def retrieve_context(query, top_k=3):
|
|
|
|
| 138 |
if not RAG_ENABLED or KNOWLEDGE_EMBEDDINGS is None:
|
| 139 |
return ""
|
| 140 |
|
|
|
|
| 141 |
query_embedding = embedder.encode(query, convert_to_tensor=True)
|
|
|
|
|
|
|
| 142 |
cos_scores = util.cos_sim(query_embedding, KNOWLEDGE_EMBEDDINGS)[0]
|
|
|
|
|
|
|
| 143 |
top_results = torch.topk(cos_scores, k=min(top_k, len(KNOWLEDGE_CHUNKS)))
|
| 144 |
|
| 145 |
retrieved_text = []
|
| 146 |
for score, idx in zip(top_results[0], top_results[1]):
|
| 147 |
+
if score > 0.25: # Slightly lower threshold for broader context
|
| 148 |
retrieved_text.append(KNOWLEDGE_CHUNKS[idx])
|
| 149 |
|
| 150 |
return "\n\n".join(retrieved_text)
|
|
|
|
| 152 |
# --- PREDICTION FUNCTION ---
|
| 153 |
|
| 154 |
def predict(message, history, system_content=None):
|
|
|
|
| 155 |
current_system_content = system_content if system_content else SYSTEM_CONTENT
|
| 156 |
|
|
|
|
| 157 |
context = ""
|
| 158 |
if RAG_ENABLED:
|
| 159 |
retrieved = retrieve_context(message)
|
| 160 |
if retrieved:
|
| 161 |
+
context = f"\nUse this context to answer:\n{retrieved}\n"
|
|
|
|
| 162 |
message = f"{context}\nQuestion: {message}"
|
|
|
|
| 163 |
|
| 164 |
history_transformer_format = history + [[message, ""]]
|
| 165 |
stop = StopOnTokens()
|
| 166 |
|
|
|
|
| 167 |
system_prompt = f"<|system|>\n{current_system_content}</s>"
|
| 168 |
conversation = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]])
|
| 169 |
for item in history_transformer_format])
|
| 170 |
|
| 171 |
messages = system_prompt + conversation
|
|
|
|
|
|
|
| 172 |
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
| 173 |
|
| 174 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
|
|
|
| 184 |
stopping_criteria=StoppingCriteriaList([stop])
|
| 185 |
)
|
| 186 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 187 |
+
t.start()
|
| 188 |
|
| 189 |
partial_message = ""
|
| 190 |
for new_token in streamer:
|
| 191 |
partial_message += new_token
|
| 192 |
+
if '</s>' in partial_message:
|
| 193 |
break
|
| 194 |
yield partial_message
|
| 195 |
|
| 196 |
+
# --- UI LOGIC ---
|
| 197 |
|
| 198 |
+
def add_fandom_content(url, current_text):
|
| 199 |
+
"""Fetches fandom content and appends it to the textbox."""
|
| 200 |
+
scraped_text = scrape_wikifandom(url)
|
| 201 |
+
if scraped_text.startswith("Error"):
|
| 202 |
+
return current_text, scraped_text # Return error in status
|
| 203 |
+
|
| 204 |
+
new_text = (current_text + "\n\n" + scraped_text).strip()
|
| 205 |
+
return new_text, "Fandom content added to Knowledge Base text area."
|
| 206 |
|
| 207 |
+
def add_image_content(image, current_text):
|
| 208 |
+
"""Analyzes image and appends description to textbox."""
|
| 209 |
+
description = process_image_to_text(image)
|
| 210 |
+
if description.startswith("Error"):
|
| 211 |
+
return current_text, description
|
| 212 |
+
|
| 213 |
+
new_text = (current_text + "\n\n" + description).strip()
|
| 214 |
+
return new_text, "Image analysis added. RAG now knows what this image looks like."
|
| 215 |
|
| 216 |
# --- GRADIO INTERFACE ---
|
| 217 |
|
| 218 |
+
with gr.Blocks(title="TinyLlama Multi-Source RAG") as demo:
|
| 219 |
+
gr.Markdown("# 🦙 TinyLlama RAG (WikiFandom + Images)")
|
| 220 |
+
gr.Markdown("Chat with TinyLlama. Build a knowledge base from text, WikiFandom URLs, or Images.")
|
| 221 |
|
| 222 |
with gr.Row():
|
| 223 |
# Left Column: Chat
|
| 224 |
with gr.Column(scale=2):
|
|
|
|
| 225 |
chat_interface = gr.ChatInterface(
|
| 226 |
predict,
|
| 227 |
+
examples=['Who is in the image?', 'Tell me about the wiki page'],
|
|
|
|
| 228 |
)
|
| 229 |
|
| 230 |
+
# Right Column: Tools
|
| 231 |
with gr.Column(scale=1):
|
| 232 |
|
| 233 |
+
# --- RAG INPUTS ---
|
| 234 |
+
with gr.Accordion("📚 Knowledge Sources", open=True):
|
| 235 |
+
|
| 236 |
+
# Main Text Area (Where all data ends up)
|
| 237 |
kb_input = gr.Textbox(
|
| 238 |
+
label="Compiled Knowledge Base",
|
| 239 |
+
lines=6,
|
| 240 |
+
placeholder="Data from Wiki or Images will appear here...",
|
| 241 |
+
interactive=True
|
| 242 |
)
|
| 243 |
+
|
| 244 |
+
with gr.Tab("🔗 WikiFandom"):
|
| 245 |
+
url_input = gr.Textbox(label="Fandom URL", placeholder="https://starwars.fandom.com/wiki/Luke_Skywalker")
|
| 246 |
+
scrape_btn = gr.Button("Scrape & Add Text")
|
| 247 |
+
|
| 248 |
+
with gr.Tab("🖼️ Image Support"):
|
| 249 |
+
img_input = gr.Image(type="pil", label="Upload Image")
|
| 250 |
+
img_btn = gr.Button("Analyze & Add Description")
|
| 251 |
+
|
| 252 |
+
# Build Button
|
| 253 |
with gr.Row():
|
| 254 |
+
process_btn = gr.Button("⚡ Build Knowledge Base", variant="primary")
|
| 255 |
rag_status = gr.Checkbox(label="RAG Active", interactive=False, value=False)
|
| 256 |
+
|
| 257 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
# System Prompt
|
| 260 |
+
with gr.Accordion("⚙️ System Settings", open=False):
|
| 261 |
+
system_content_input = gr.Textbox(value=SYSTEM_CONTENT, lines=2, label="System Prompt")
|
| 262 |
+
|
| 263 |
+
# --- EVENT HANDLERS ---
|
| 264 |
+
|
| 265 |
+
# 1. Scrape Fandom -> Append to Textbox
|
| 266 |
+
scrape_btn.click(
|
| 267 |
+
add_fandom_content,
|
| 268 |
+
inputs=[url_input, kb_input],
|
| 269 |
+
outputs=[kb_input, status_output]
|
| 270 |
)
|
| 271 |
|
| 272 |
+
# 2. Analyze Image -> Append to Textbox
|
| 273 |
+
img_btn.click(
|
| 274 |
+
add_image_content,
|
| 275 |
+
inputs=[img_input, kb_input],
|
| 276 |
+
outputs=[kb_input, status_output]
|
| 277 |
)
|
| 278 |
+
|
| 279 |
+
# 3. Build RAG Index
|
| 280 |
+
process_btn.click(
|
| 281 |
+
process_knowledge_base,
|
| 282 |
+
inputs=[kb_input],
|
| 283 |
+
outputs=[status_output, rag_status]
|
| 284 |
)
|
| 285 |
|
| 286 |
if __name__ == "__main__":
|
| 287 |
+
demo.launch()
|