guychuk commited on
Commit
398f8eb
Β·
verified Β·
1 Parent(s): 899fe08

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +135 -6
app.py CHANGED
@@ -1,6 +1,135 @@
1
- gradio
2
- onnxruntime
3
- huggingface_hub
4
- transformers
5
- Pillow
6
- numpy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import onnxruntime as ort
4
+ from PIL import Image
5
+ from huggingface_hub import hf_hub_download
6
+ from transformers import AutoTokenizer
7
+
8
+ # ---------------------------------------------------------
9
+ # Download ONNX files directly from Hugging Face model hubs
10
+ # ---------------------------------------------------------
11
+
12
+ # 1) Multilingual sentiment (DistilBERT)
13
+ multilingual_onnx = hf_hub_download(
14
+ repo_id="lxyuan/distilbert-base-multilingual-cased-sentiments-student",
15
+ filename="onnx/model.onnx"
16
+ )
17
+ tokenizer_multilingual = AutoTokenizer.from_pretrained(
18
+ "lxyuan/distilbert-base-multilingual-cased-sentiments-student"
19
+ )
20
+ session_multilingual = ort.InferenceSession(multilingual_onnx, providers=["CPUExecutionProvider"])
21
+
22
+ # 2) SDG BERT
23
+ sdgbert_onnx = hf_hub_download(
24
+ repo_id="sadickam/sdgBERT",
25
+ filename="onnx/model.onnx"
26
+ )
27
+ tokenizer_sdg = AutoTokenizer.from_pretrained("sadickam/sdgBERT")
28
+ session_sdg = ort.InferenceSession(sdgbert_onnx, providers=["CPUExecutionProvider"])
29
+
30
+ # 3) German sentiment BERT
31
+ german_onnx = hf_hub_download(
32
+ repo_id="oliverguhr/german-sentiment-bert",
33
+ filename="onnx/model.onnx"
34
+ )
35
+ tokenizer_german = AutoTokenizer.from_pretrained("oliverguhr/german-sentiment-bert")
36
+ session_german = ort.InferenceSession(german_onnx, providers=["CPUExecutionProvider"])
37
+
38
+ # 4) ViT-small image classifier
39
+ vit_onnx = hf_hub_download(
40
+ repo_id="WinKawaks/vit-small-patch16-224",
41
+ filename="onnx/model.onnx"
42
+ )
43
+ session_vit = ort.InferenceSession(vit_onnx, providers=["CPUExecutionProvider"])
44
+
45
+ # Basic preprocessing params (ImageNet)
46
+ IMAGE_SIZE = 224
47
+ MEAN = [0.485, 0.456, 0.406]
48
+ STD = [0.229, 0.224, 0.225]
49
+
50
+
51
+ # ---------------------------------------------------------
52
+ # Inference functions
53
+ # ---------------------------------------------------------
54
+ def softmax(x):
55
+ e = np.exp(x - np.max(x))
56
+ return e / e.sum(axis=-1, keepdims=True)
57
+
58
+
59
+ def run_multilingual(text):
60
+ inputs = tokenizer_multilingual(text, return_tensors="np", truncation=True, padding=True)
61
+ inputs = {k: v.astype(np.int64) for k, v in inputs.items()}
62
+ logits = session_multilingual.run(None, inputs)[0][0]
63
+ probs = softmax(logits)
64
+ labels = tokenizer_multilingual.model.config.id2label
65
+ return {labels[i]: float(probs[i]) for i in range(len(probs))}
66
+
67
+
68
+ def run_sdg(text):
69
+ inputs = tokenizer_sdg(text, return_tensors="np", truncation=True, padding=True)
70
+ inputs = {k: v.astype(np.int64) for k, v in inputs.items()}
71
+ logits = session_sdg.run(None, inputs)[0][0]
72
+ probs = softmax(logits)
73
+ labels = tokenizer_sdg.model.config.id2label
74
+ return {labels[i]: float(probs[i]) for i in range(len(probs))}
75
+
76
+
77
+ def run_german(text):
78
+ inputs = tokenizer_german(text, return_tensors="np", truncation=True, padding=True)
79
+ inputs = {k: v.astype(np.int64) for k, v in inputs.items()}
80
+ logits = session_german.run(None, inputs)[0][0]
81
+ probs = softmax(logits)
82
+ labels = tokenizer_german.model.config.id2label
83
+ return {labels[i]: float(probs[i]) for i in range(len(probs))}
84
+
85
+
86
+ def preprocess_vit(image):
87
+ image = image.convert("RGB").resize((IMAGE_SIZE, IMAGE_SIZE))
88
+ arr = np.array(image).astype(np.float32) / 255.0
89
+ arr = (arr - MEAN) / STD
90
+ arr = arr.transpose(2, 0, 1)
91
+ return arr[np.newaxis, :]
92
+
93
+
94
+ def run_vit(image):
95
+ arr = preprocess_vit(image)
96
+ input_name = session_vit.get_inputs()[0].name
97
+ logits = session_vit.run(None, {input_name: arr})[0][0]
98
+ probs = softmax(logits)
99
+ top5 = probs.argsort()[::-1][:5]
100
+ return {f"class_{i}": float(probs[i]) for i in top5}
101
+
102
+
103
+ # ---------------------------------------------------------
104
+ # Gradio UI
105
+ # ---------------------------------------------------------
106
+ def inference(model, text, image):
107
+ if model == "Multilingual Sentiment":
108
+ return run_multilingual(text)
109
+ if model == "SDG Classification":
110
+ return run_sdg(text)
111
+ if model == "German Sentiment":
112
+ return run_german(text)
113
+ if model == "ViT Image Classification":
114
+ if image is None:
115
+ return {"error": "Upload an image"}
116
+ return run_vit(image)
117
+ return {"error": "Invalid selection"}
118
+
119
+
120
+ with gr.Blocks() as demo:
121
+ gr.Markdown("# πŸ” Multi-Model ONNX Inference (HF-loaded)")
122
+
123
+ model_choice = gr.Dropdown(
124
+ ["Multilingual Sentiment", "SDG Classification", "German Sentiment", "ViT Image Classification"],
125
+ label="Choose a model"
126
+ )
127
+
128
+ text_in = gr.Textbox(label="Text Input", lines=3)
129
+ img_in = gr.Image(label="Image Input", type="pil")
130
+ output = gr.JSON(label="Output")
131
+
132
+ run_btn = gr.Button("Run Inference")
133
+ run_btn.click(fn=inference, inputs=[model_choice, text_in, img_in], outputs=[output])
134
+
135
+ demo.launch()