File size: 19,611 Bytes
648df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# SAM 3: Segment Anything with Concepts

Meta Superintelligence Labs

[Nicolas Carion](https://www.nicolascarion.com/)\*,
[Laura Gustafson](https://scholar.google.com/citations?user=c8IpF9gAAAAJ&hl=en)\*,
[Yuan-Ting Hu](https://scholar.google.com/citations?user=E8DVVYQAAAAJ&hl=en)\*,
[Shoubhik Debnath](https://scholar.google.com/citations?user=fb6FOfsAAAAJ&hl=en)\*,
[Ronghang Hu](https://ronghanghu.com/)\*,
[Didac Suris](https://www.didacsuris.com/)\*,
[Chaitanya Ryali](https://scholar.google.com/citations?user=4LWx24UAAAAJ&hl=en)\*,
[Kalyan Vasudev Alwala](https://scholar.google.co.in/citations?user=m34oaWEAAAAJ&hl=en)\*,
[Haitham Khedr](https://hkhedr.com/)\*, Andrew Huang,
[Jie Lei](https://jayleicn.github.io/),
[Tengyu Ma](https://scholar.google.com/citations?user=VeTSl0wAAAAJ&hl=en),
[Baishan Guo](https://scholar.google.com/citations?user=BC5wDu8AAAAJ&hl=en),
Arpit Kalla, [Markus Marks](https://damaggu.github.io/),
[Joseph Greer](https://scholar.google.com/citations?user=guL96CkAAAAJ&hl=en),
Meng Wang, [Peize Sun](https://peizesun.github.io/),
[Roman Rädle](https://scholar.google.com/citations?user=Tpt57v0AAAAJ&hl=en),
[Triantafyllos Afouras](https://www.robots.ox.ac.uk/~afourast/),
[Effrosyni Mavroudi](https://scholar.google.com/citations?user=vYRzGGEAAAAJ&hl=en),
[Katherine Xu](https://k8xu.github.io/)°,
[Tsung-Han Wu](https://patrickthwu.com/)°,
[Yu Zhou](https://yu-bryan-zhou.github.io/)°,
[Liliane Momeni](https://scholar.google.com/citations?user=Lb-KgVYAAAAJ&hl=en)°,
[Rishi Hazra](https://rishihazra.github.io/)°,
[Shuangrui Ding](https://mark12ding.github.io/)°,
[Sagar Vaze](https://sgvaze.github.io/)°,
[Francois Porcher](https://scholar.google.com/citations?user=LgHZ8hUAAAAJ&hl=en)°,
[Feng Li](https://fengli-ust.github.io/)°,
[Siyuan Li](https://siyuanliii.github.io/)°,
[Aishwarya Kamath](https://ashkamath.github.io/)°,
[Ho Kei Cheng](https://hkchengrex.com/)°,
[Piotr Dollar](https://pdollar.github.io/)†,
[Nikhila Ravi](https://nikhilaravi.com/)†,
[Kate Saenko](https://ai.bu.edu/ksaenko.html)†,
[Pengchuan Zhang](https://pzzhang.github.io/pzzhang/)†,
[Christoph Feichtenhofer](https://feichtenhofer.github.io/)†

\* core contributor, ° intern, † project lead, order is random within groups

[[`Paper`](https://ai.meta.com/research/publications/sam-3-segment-anything-with-concepts/)]
[[`Project`](https://ai.meta.com/sam3)]
[[`Demo`](https://segment-anything.com/)]
[[`Blog`](https://ai.meta.com/blog/segment-anything-model-3/)]
<!-- [[`BibTeX`](#citing-sam-3)] -->

![SAM 3 architecture](assets/model_diagram.png?raw=true) SAM 3 is a unified foundation model for promptable segmentation in images and videos. It can detect, segment, and track objects using text or visual prompts such as points, boxes, and masks. Compared to its predecessor [SAM 2](https://github.com/facebookresearch/sam2), SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short text phrase or exemplars. Unlike prior work, SAM 3 can handle a vastly larger set of open-vocabulary prompts. It achieves 75-80% of human performance on our new [SA-CO benchmark](https://github.com/facebookresearch/sam3/edit/main_readme/README.md#sa-co-dataset) which contains 270K unique concepts, over 50 times more than existing benchmarks.

This breakthrough is driven by an innovative data engine that has automatically annotated over 4 million unique concepts, creating the largest high-quality open-vocabulary segmentation dataset to date. In addition, SAM 3 introduces a new model architecture featuring a presence token that improves discrimination between closely related text prompts (e.g., “a player in white” vs. “a player in red”), as well as a decoupled detector–tracker design that minimizes task interference and scales efficiently with data.

<p align="center">
  <img src="assets/dog.gif" width=380 />
  <img src="assets/player.gif" width=380 />
</p>

## Installation

### Prerequisites

- Python 3.12 or higher
- PyTorch 2.7 or higher
- CUDA-compatible GPU with CUDA 12.6 or higher

1. **Create a new Conda environment:**

```bash
conda create -n sam3 python=3.12
conda deactivate
conda activate sam3
```

2. **Install PyTorch with CUDA support:**

```bash
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
```

3. **Clone the repository and install the package:**

```bash
git clone https://github.com/facebookresearch/sam3.git
cd sam3
pip install -e .
```

4. **Install additional dependencies for example notebooks or development:**

```bash
# For running example notebooks
pip install -e ".[notebooks]"

# For development
pip install -e ".[train,dev]"
```

## Getting Started

⚠️ Before using SAM 3, please request access to the checkpoints on the SAM 3
Hugging Face [repo](https://huggingface.co/facebook/sam3). Once accepted, you
need to be authenticated to download the checkpoints. You can do this by running
the following [steps](https://huggingface.co/docs/huggingface_hub/en/quick-start#authentication)
(e.g. `hf auth login` after generating an access token.)

### Basic Usage

```python
import torch
#################################### For Image ####################################
from PIL import Image
from sam3.model_builder import build_sam3_image_model
from sam3.model.sam3_image_processor import Sam3Processor
# Load the model
model = build_sam3_image_model()
processor = Sam3Processor(model)
# Load an image
image = Image.open("<YOUR_IMAGE_PATH.jpg>")
inference_state = processor.set_image(image)
# Prompt the model with text
output = processor.set_text_prompt(state=inference_state, prompt="<YOUR_TEXT_PROMPT>")

# Get the masks, bounding boxes, and scores
masks, boxes, scores = output["masks"], output["boxes"], output["scores"]

#################################### For Video ####################################

from sam3.model_builder import build_sam3_video_predictor

video_predictor = build_sam3_video_predictor()
video_path = "<YOUR_VIDEO_PATH>" # a JPEG folder or an MP4 video file
# Start a session
response = video_predictor.handle_request(
    request=dict(
        type="start_session",
        resource_path=video_path,
    )
)
response = video_predictor.handle_request(
    request=dict(
        type="add_prompt",
        session_id=response["session_id"],
        frame_index=0, # Arbitrary frame index
        text="<YOUR_TEXT_PROMPT>",
    )
)
output = response["outputs"]
```

## Examples

The `examples` directory contains notebooks demonstrating how to use SAM3 with
various types of prompts:

- [`sam3_image_predictor_example.ipynb`](examples/sam3_image_predictor_example.ipynb)
  : Demonstrates how to prompt SAM 3 with text and visual box prompts on images.
- [`sam3_video_predictor_example.ipynb`](examples/sam3_video_predictor_example.ipynb)
  : Demonstrates how to prompt SAM 3 with text prompts on videos, and doing
  further interactive refinements with points.
- [`sam3_image_batched_inference.ipynb`](examples/sam3_image_batched_inference.ipynb)
  : Demonstrates how to run batched inference with SAM 3 on images.
- [`sam3_agent.ipynb`](examples/sam3_agent.ipynb): Demonsterates the use of SAM
  3 Agent to segment complex text prompt on images.
- [`saco_gold_silver_vis_example.ipynb`](examples/saco_gold_silver_vis_example.ipynb)
  : Shows a few examples from SA-Co image evaluation set.
- [`saco_veval_vis_example.ipynb`](examples/saco_veval_vis_example.ipynb) :
  Shows a few examples from SA-Co video evaluation set.

There are additional notebooks in the examples directory that demonstrate how to
use SAM 3 for interactive instance segmentation in images and videos (SAM 1/2
tasks), or as a tool for an MLLM, and how to run evaluations on the SA-Co
dataset.

To run the Jupyter notebook examples:

```bash
# Make sure you have the notebooks dependencies installed
pip install -e ".[notebooks]"

# Start Jupyter notebook
jupyter notebook examples/sam3_image_predictor_example.ipynb
```

## Model

SAM 3 consists of a detector and a tracker that share a vision encoder. It has 848M parameters. The
detector is a DETR-based model conditioned on text, geometry, and image
exemplars. The tracker inherits the SAM 2 transformer encoder-decoder
architecture, supporting video segmentation and interactive refinement.

## Image Results

<div align="center">
<table style="min-width: 80%; border: 2px solid #ddd; border-collapse: collapse">
  <thead>
    <tr>
      <th rowspan="3" style="border-right: 2px solid #ddd; padding: 12px 20px">Model</th>
      <th colspan="3" style="text-align: center; border-right: 2px solid #ddd; padding: 12px 20px">Instance Segmentation</th>
      <th colspan="5" style="text-align: center; padding: 12px 20px">Box Detection</th>
    </tr>
    <tr>
      <th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">LVIS</th>
      <th style="text-align: center; border-right: 2px solid #ddd; padding: 12px 20px">SA-Co/Gold</th>
      <th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">LVIS</th>
      <th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">COCO</th>
      <th style="text-align: center; padding: 12px 20px">SA-Co/Gold</th>
    </tr>
    <tr>
      <th style="text-align: center; padding: 12px 20px">cgF1</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">AP</th>
      <th style="text-align: center; border-right: 2px solid #ddd; padding: 12px 20px">cgF1</th>
      <th style="text-align: center; padding: 12px 20px">cgF1</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">AP</th>
      <th style="text-align: center; padding: 12px 20px">AP</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">AP<sub>o</sub>
</th>
      <th style="text-align: center; padding: 12px 20px">cgF1</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="border-right: 2px solid #ddd; padding: 10px 20px">Human</td>
      <td style="text-align: center; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">72.8</td>
      <td style="text-align: center; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; padding: 10px 20px">74.0</td>
    </tr>
    <tr>
      <td style="border-right: 2px solid #ddd; padding: 10px 20px">OWLv2*</td>
      <td style="text-align: center; padding: 10px 20px; color: #999">29.3</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px; color: #999">43.4</td>
      <td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">24.6</td>
      <td style="text-align: center; padding: 10px 20px; color: #999">30.2</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px; color: #999">45.5</td>
      <td style="text-align: center; padding: 10px 20px">46.1</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">23.9</td>
      <td style="text-align: center; padding: 10px 20px">24.5</td>
    </tr>
    <tr>
      <td style="border-right: 2px solid #ddd; padding: 10px 20px">DINO-X</td>
      <td style="text-align: center; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">38.5</td>
      <td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">21.3</td>
      <td style="text-align: center; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">52.4</td>
      <td style="text-align: center; padding: 10px 20px">56.0</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; padding: 10px 20px">22.5</td>
    </tr>
    <tr>
      <td style="border-right: 2px solid #ddd; padding: 10px 20px">Gemini 2.5</td>
      <td style="text-align: center; padding: 10px 20px">13.4</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">13.0</td>
      <td style="text-align: center; padding: 10px 20px">16.1</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; padding: 10px 20px">-</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; padding: 10px 20px">14.4</td>
    </tr>
    <tr style="border-top: 2px solid #b19c9cff">
      <td style="border-right: 2px solid #ddd; padding: 10px 20px">SAM 3</td>
      <td style="text-align: center; padding: 10px 20px">37.2</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">48.5</td>
      <td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">54.1</td>
      <td style="text-align: center; padding: 10px 20px">40.6</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">53.6</td>
      <td style="text-align: center; padding: 10px 20px">56.4</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">55.7</td>
      <td style="text-align: center; padding: 10px 20px">55.7</td>
    </tr>
  </tbody>
</table>

<p style="text-align: center; margin-top: 10px; font-size: 0.9em; color: #ddd;">* Partially trained on LVIS, AP<sub>o</sub> refers to COCO-O accuracy</p>

</div>

## Video Results

<div align="center">
<table style="min-width: 80%; border: 2px solid #ddd; border-collapse: collapse">
  <thead>
    <tr>
      <th rowspan="2" style="border-right: 2px solid #ddd; padding: 12px 20px">Model</th>
      <th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">SA-V test</th>
      <th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">YT-Temporal-1B test</th>
      <th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">SmartGlasses test</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">LVVIS test</th>
      <th style="text-align: center; padding: 12px 20px">BURST test</th>
    </tr>
    <tr>
      <th style="text-align: center; padding: 12px 20px">cgF1</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">pHOTA</th>
      <th style="text-align: center; padding: 12px 20px">cgF1</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">pHOTA</th>
      <th style="text-align: center; padding: 12px 20px">cgF1</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">pHOTA</th>
      <th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">mAP</th>
      <th style="text-align: center; padding: 12px 20px">HOTA</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="border-right: 2px solid #ddd; padding: 10px 20px">Human</td>
      <td style="text-align: center; padding: 10px 20px">53.1</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">70.5</td>
      <td style="text-align: center; padding: 10px 20px">71.2</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">78.4</td>
      <td style="text-align: center; padding: 10px 20px">58.5</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">72.3</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
      <td style="text-align: center; padding: 10px 20px">-</td>
    </tr>
    <tr style="border-top: 2px solid #b19c9cff">
      <td style="border-right: 2px solid #ddd; padding: 10px 20px">SAM 3</td>
      <td style="text-align: center; padding: 10px 20px">30.3</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">58.0</td>
      <td style="text-align: center; padding: 10px 20px">50.8</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">69.9</td>
      <td style="text-align: center; padding: 10px 20px">36.4</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">63.6</td>
      <td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">36.3</td>
      <td style="text-align: center; padding: 10px 20px">44.5</td>
    </tr>
  </tbody>
</table>
</div>

## SA-Co Dataset

We release 2 image benchmarks, [SA-Co/Gold](scripts/eval/gold/README.md) and
[SA-Co/Silver](scripts/eval/silver/README.md), and a video benchmark
[SA-Co/VEval](scripts/eval/veval/README.md). The datasets contain images (or videos) with annotated noun phrases. Each image/video and noun phrase pair is annotated with instance masks and unique IDs of each object matching the phrase. Phrases that have no matching objects (negative prompts) have no masks, shown in red font in the figure. See the linked READMEs for more details on how to download and run evaluations on the datasets.

* HuggingFace host: [SA-Co/Gold](https://huggingface.co/datasets/facebook/SACo-Gold), [SA-Co/Silver](https://huggingface.co/datasets/facebook/SACo-Silver) and [SA-Co/VEval](https://huggingface.co/datasets/facebook/SACo-VEval)
* Roboflow host: [SA-Co/Gold](https://universe.roboflow.com/sa-co-gold), [SA-Co/Silver](https://universe.roboflow.com/sa-co-silver) and [SA-Co/VEval](https://universe.roboflow.com/sa-co-veval)

![SA-Co dataset](assets/sa_co_dataset.jpg?raw=true)

## Development

To set up the development environment:

```bash
pip install -e ".[dev,train]"
```

To format the code:

```bash
ufmt format .
```

## Contributing

See [contributing](CONTRIBUTING.md) and the
[code of conduct](CODE_OF_CONDUCT.md).

## License

This project is licensed under the SAM License - see the [LICENSE](LICENSE) file
for details.

## Acknowledgements

We would like to thank the following people for their contributions to the SAM 3 project: Alex He, Alexander Kirillov,
Alyssa Newcomb, Ana Paula Kirschner Mofarrej, Andrea Madotto, Andrew Westbury, Ashley Gabriel, Azita Shokpour,
Ben Samples, Bernie Huang, Carleigh Wood, Ching-Feng Yeh, Christian Puhrsch, Claudette Ward, Daniel Bolya,
Daniel Li, Facundo Figueroa, Fazila Vhora, George Orlin, Hanzi Mao, Helen Klein, Hu Xu, Ida Cheng, Jake Kinney,
Jiale Zhi, Jo Sampaio, Joel Schlosser, Justin Johnson, Kai Brown, Karen Bergan, Karla Martucci, Kenny Lehmann,
Maddie Mintz, Mallika Malhotra, Matt Ward, Michelle Chan, Michelle Restrepo, Miranda Hartley, Muhammad Maaz,
Nisha Deo, Peter Park, Phillip Thomas, Raghu Nayani, Rene Martinez Doehner, Robbie Adkins, Ross Girshik, Sasha
Mitts, Shashank Jain, Spencer Whitehead, Ty Toledano, Valentin Gabeur, Vincent Cho, Vivian Lee, William Ngan,
Xuehai He, Yael Yungster, Ziqi Pang, Ziyi Dou, Zoe Quake.

<!-- ## Citing SAM 3

If you use SAM 3 or the SA-Co dataset in your research, please use the following BibTeX entry.

```bibtex
TODO
``` -->