Spaces:
Runtime error
Runtime error
File size: 19,611 Bytes
648df8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# SAM 3: Segment Anything with Concepts
Meta Superintelligence Labs
[Nicolas Carion](https://www.nicolascarion.com/)\*,
[Laura Gustafson](https://scholar.google.com/citations?user=c8IpF9gAAAAJ&hl=en)\*,
[Yuan-Ting Hu](https://scholar.google.com/citations?user=E8DVVYQAAAAJ&hl=en)\*,
[Shoubhik Debnath](https://scholar.google.com/citations?user=fb6FOfsAAAAJ&hl=en)\*,
[Ronghang Hu](https://ronghanghu.com/)\*,
[Didac Suris](https://www.didacsuris.com/)\*,
[Chaitanya Ryali](https://scholar.google.com/citations?user=4LWx24UAAAAJ&hl=en)\*,
[Kalyan Vasudev Alwala](https://scholar.google.co.in/citations?user=m34oaWEAAAAJ&hl=en)\*,
[Haitham Khedr](https://hkhedr.com/)\*, Andrew Huang,
[Jie Lei](https://jayleicn.github.io/),
[Tengyu Ma](https://scholar.google.com/citations?user=VeTSl0wAAAAJ&hl=en),
[Baishan Guo](https://scholar.google.com/citations?user=BC5wDu8AAAAJ&hl=en),
Arpit Kalla, [Markus Marks](https://damaggu.github.io/),
[Joseph Greer](https://scholar.google.com/citations?user=guL96CkAAAAJ&hl=en),
Meng Wang, [Peize Sun](https://peizesun.github.io/),
[Roman Rädle](https://scholar.google.com/citations?user=Tpt57v0AAAAJ&hl=en),
[Triantafyllos Afouras](https://www.robots.ox.ac.uk/~afourast/),
[Effrosyni Mavroudi](https://scholar.google.com/citations?user=vYRzGGEAAAAJ&hl=en),
[Katherine Xu](https://k8xu.github.io/)°,
[Tsung-Han Wu](https://patrickthwu.com/)°,
[Yu Zhou](https://yu-bryan-zhou.github.io/)°,
[Liliane Momeni](https://scholar.google.com/citations?user=Lb-KgVYAAAAJ&hl=en)°,
[Rishi Hazra](https://rishihazra.github.io/)°,
[Shuangrui Ding](https://mark12ding.github.io/)°,
[Sagar Vaze](https://sgvaze.github.io/)°,
[Francois Porcher](https://scholar.google.com/citations?user=LgHZ8hUAAAAJ&hl=en)°,
[Feng Li](https://fengli-ust.github.io/)°,
[Siyuan Li](https://siyuanliii.github.io/)°,
[Aishwarya Kamath](https://ashkamath.github.io/)°,
[Ho Kei Cheng](https://hkchengrex.com/)°,
[Piotr Dollar](https://pdollar.github.io/)†,
[Nikhila Ravi](https://nikhilaravi.com/)†,
[Kate Saenko](https://ai.bu.edu/ksaenko.html)†,
[Pengchuan Zhang](https://pzzhang.github.io/pzzhang/)†,
[Christoph Feichtenhofer](https://feichtenhofer.github.io/)†
\* core contributor, ° intern, † project lead, order is random within groups
[[`Paper`](https://ai.meta.com/research/publications/sam-3-segment-anything-with-concepts/)]
[[`Project`](https://ai.meta.com/sam3)]
[[`Demo`](https://segment-anything.com/)]
[[`Blog`](https://ai.meta.com/blog/segment-anything-model-3/)]
<!-- [[`BibTeX`](#citing-sam-3)] -->
 SAM 3 is a unified foundation model for promptable segmentation in images and videos. It can detect, segment, and track objects using text or visual prompts such as points, boxes, and masks. Compared to its predecessor [SAM 2](https://github.com/facebookresearch/sam2), SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short text phrase or exemplars. Unlike prior work, SAM 3 can handle a vastly larger set of open-vocabulary prompts. It achieves 75-80% of human performance on our new [SA-CO benchmark](https://github.com/facebookresearch/sam3/edit/main_readme/README.md#sa-co-dataset) which contains 270K unique concepts, over 50 times more than existing benchmarks.
This breakthrough is driven by an innovative data engine that has automatically annotated over 4 million unique concepts, creating the largest high-quality open-vocabulary segmentation dataset to date. In addition, SAM 3 introduces a new model architecture featuring a presence token that improves discrimination between closely related text prompts (e.g., “a player in white” vs. “a player in red”), as well as a decoupled detector–tracker design that minimizes task interference and scales efficiently with data.
<p align="center">
<img src="assets/dog.gif" width=380 />
<img src="assets/player.gif" width=380 />
</p>
## Installation
### Prerequisites
- Python 3.12 or higher
- PyTorch 2.7 or higher
- CUDA-compatible GPU with CUDA 12.6 or higher
1. **Create a new Conda environment:**
```bash
conda create -n sam3 python=3.12
conda deactivate
conda activate sam3
```
2. **Install PyTorch with CUDA support:**
```bash
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
```
3. **Clone the repository and install the package:**
```bash
git clone https://github.com/facebookresearch/sam3.git
cd sam3
pip install -e .
```
4. **Install additional dependencies for example notebooks or development:**
```bash
# For running example notebooks
pip install -e ".[notebooks]"
# For development
pip install -e ".[train,dev]"
```
## Getting Started
⚠️ Before using SAM 3, please request access to the checkpoints on the SAM 3
Hugging Face [repo](https://huggingface.co/facebook/sam3). Once accepted, you
need to be authenticated to download the checkpoints. You can do this by running
the following [steps](https://huggingface.co/docs/huggingface_hub/en/quick-start#authentication)
(e.g. `hf auth login` after generating an access token.)
### Basic Usage
```python
import torch
#################################### For Image ####################################
from PIL import Image
from sam3.model_builder import build_sam3_image_model
from sam3.model.sam3_image_processor import Sam3Processor
# Load the model
model = build_sam3_image_model()
processor = Sam3Processor(model)
# Load an image
image = Image.open("<YOUR_IMAGE_PATH.jpg>")
inference_state = processor.set_image(image)
# Prompt the model with text
output = processor.set_text_prompt(state=inference_state, prompt="<YOUR_TEXT_PROMPT>")
# Get the masks, bounding boxes, and scores
masks, boxes, scores = output["masks"], output["boxes"], output["scores"]
#################################### For Video ####################################
from sam3.model_builder import build_sam3_video_predictor
video_predictor = build_sam3_video_predictor()
video_path = "<YOUR_VIDEO_PATH>" # a JPEG folder or an MP4 video file
# Start a session
response = video_predictor.handle_request(
request=dict(
type="start_session",
resource_path=video_path,
)
)
response = video_predictor.handle_request(
request=dict(
type="add_prompt",
session_id=response["session_id"],
frame_index=0, # Arbitrary frame index
text="<YOUR_TEXT_PROMPT>",
)
)
output = response["outputs"]
```
## Examples
The `examples` directory contains notebooks demonstrating how to use SAM3 with
various types of prompts:
- [`sam3_image_predictor_example.ipynb`](examples/sam3_image_predictor_example.ipynb)
: Demonstrates how to prompt SAM 3 with text and visual box prompts on images.
- [`sam3_video_predictor_example.ipynb`](examples/sam3_video_predictor_example.ipynb)
: Demonstrates how to prompt SAM 3 with text prompts on videos, and doing
further interactive refinements with points.
- [`sam3_image_batched_inference.ipynb`](examples/sam3_image_batched_inference.ipynb)
: Demonstrates how to run batched inference with SAM 3 on images.
- [`sam3_agent.ipynb`](examples/sam3_agent.ipynb): Demonsterates the use of SAM
3 Agent to segment complex text prompt on images.
- [`saco_gold_silver_vis_example.ipynb`](examples/saco_gold_silver_vis_example.ipynb)
: Shows a few examples from SA-Co image evaluation set.
- [`saco_veval_vis_example.ipynb`](examples/saco_veval_vis_example.ipynb) :
Shows a few examples from SA-Co video evaluation set.
There are additional notebooks in the examples directory that demonstrate how to
use SAM 3 for interactive instance segmentation in images and videos (SAM 1/2
tasks), or as a tool for an MLLM, and how to run evaluations on the SA-Co
dataset.
To run the Jupyter notebook examples:
```bash
# Make sure you have the notebooks dependencies installed
pip install -e ".[notebooks]"
# Start Jupyter notebook
jupyter notebook examples/sam3_image_predictor_example.ipynb
```
## Model
SAM 3 consists of a detector and a tracker that share a vision encoder. It has 848M parameters. The
detector is a DETR-based model conditioned on text, geometry, and image
exemplars. The tracker inherits the SAM 2 transformer encoder-decoder
architecture, supporting video segmentation and interactive refinement.
## Image Results
<div align="center">
<table style="min-width: 80%; border: 2px solid #ddd; border-collapse: collapse">
<thead>
<tr>
<th rowspan="3" style="border-right: 2px solid #ddd; padding: 12px 20px">Model</th>
<th colspan="3" style="text-align: center; border-right: 2px solid #ddd; padding: 12px 20px">Instance Segmentation</th>
<th colspan="5" style="text-align: center; padding: 12px 20px">Box Detection</th>
</tr>
<tr>
<th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">LVIS</th>
<th style="text-align: center; border-right: 2px solid #ddd; padding: 12px 20px">SA-Co/Gold</th>
<th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">LVIS</th>
<th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">COCO</th>
<th style="text-align: center; padding: 12px 20px">SA-Co/Gold</th>
</tr>
<tr>
<th style="text-align: center; padding: 12px 20px">cgF1</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">AP</th>
<th style="text-align: center; border-right: 2px solid #ddd; padding: 12px 20px">cgF1</th>
<th style="text-align: center; padding: 12px 20px">cgF1</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">AP</th>
<th style="text-align: center; padding: 12px 20px">AP</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">AP<sub>o</sub>
</th>
<th style="text-align: center; padding: 12px 20px">cgF1</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border-right: 2px solid #ddd; padding: 10px 20px">Human</td>
<td style="text-align: center; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">72.8</td>
<td style="text-align: center; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; padding: 10px 20px">74.0</td>
</tr>
<tr>
<td style="border-right: 2px solid #ddd; padding: 10px 20px">OWLv2*</td>
<td style="text-align: center; padding: 10px 20px; color: #999">29.3</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px; color: #999">43.4</td>
<td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">24.6</td>
<td style="text-align: center; padding: 10px 20px; color: #999">30.2</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px; color: #999">45.5</td>
<td style="text-align: center; padding: 10px 20px">46.1</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">23.9</td>
<td style="text-align: center; padding: 10px 20px">24.5</td>
</tr>
<tr>
<td style="border-right: 2px solid #ddd; padding: 10px 20px">DINO-X</td>
<td style="text-align: center; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">38.5</td>
<td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">21.3</td>
<td style="text-align: center; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">52.4</td>
<td style="text-align: center; padding: 10px 20px">56.0</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; padding: 10px 20px">22.5</td>
</tr>
<tr>
<td style="border-right: 2px solid #ddd; padding: 10px 20px">Gemini 2.5</td>
<td style="text-align: center; padding: 10px 20px">13.4</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">13.0</td>
<td style="text-align: center; padding: 10px 20px">16.1</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; padding: 10px 20px">-</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; padding: 10px 20px">14.4</td>
</tr>
<tr style="border-top: 2px solid #b19c9cff">
<td style="border-right: 2px solid #ddd; padding: 10px 20px">SAM 3</td>
<td style="text-align: center; padding: 10px 20px">37.2</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">48.5</td>
<td style="text-align: center; border-right: 2px solid #ddd; padding: 10px 20px">54.1</td>
<td style="text-align: center; padding: 10px 20px">40.6</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">53.6</td>
<td style="text-align: center; padding: 10px 20px">56.4</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">55.7</td>
<td style="text-align: center; padding: 10px 20px">55.7</td>
</tr>
</tbody>
</table>
<p style="text-align: center; margin-top: 10px; font-size: 0.9em; color: #ddd;">* Partially trained on LVIS, AP<sub>o</sub> refers to COCO-O accuracy</p>
</div>
## Video Results
<div align="center">
<table style="min-width: 80%; border: 2px solid #ddd; border-collapse: collapse">
<thead>
<tr>
<th rowspan="2" style="border-right: 2px solid #ddd; padding: 12px 20px">Model</th>
<th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">SA-V test</th>
<th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">YT-Temporal-1B test</th>
<th colspan="2" style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">SmartGlasses test</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">LVVIS test</th>
<th style="text-align: center; padding: 12px 20px">BURST test</th>
</tr>
<tr>
<th style="text-align: center; padding: 12px 20px">cgF1</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">pHOTA</th>
<th style="text-align: center; padding: 12px 20px">cgF1</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">pHOTA</th>
<th style="text-align: center; padding: 12px 20px">cgF1</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">pHOTA</th>
<th style="text-align: center; border-right: 1px solid #eee; padding: 12px 20px">mAP</th>
<th style="text-align: center; padding: 12px 20px">HOTA</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border-right: 2px solid #ddd; padding: 10px 20px">Human</td>
<td style="text-align: center; padding: 10px 20px">53.1</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">70.5</td>
<td style="text-align: center; padding: 10px 20px">71.2</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">78.4</td>
<td style="text-align: center; padding: 10px 20px">58.5</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">72.3</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">-</td>
<td style="text-align: center; padding: 10px 20px">-</td>
</tr>
<tr style="border-top: 2px solid #b19c9cff">
<td style="border-right: 2px solid #ddd; padding: 10px 20px">SAM 3</td>
<td style="text-align: center; padding: 10px 20px">30.3</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">58.0</td>
<td style="text-align: center; padding: 10px 20px">50.8</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">69.9</td>
<td style="text-align: center; padding: 10px 20px">36.4</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">63.6</td>
<td style="text-align: center; border-right: 1px solid #eee; padding: 10px 20px">36.3</td>
<td style="text-align: center; padding: 10px 20px">44.5</td>
</tr>
</tbody>
</table>
</div>
## SA-Co Dataset
We release 2 image benchmarks, [SA-Co/Gold](scripts/eval/gold/README.md) and
[SA-Co/Silver](scripts/eval/silver/README.md), and a video benchmark
[SA-Co/VEval](scripts/eval/veval/README.md). The datasets contain images (or videos) with annotated noun phrases. Each image/video and noun phrase pair is annotated with instance masks and unique IDs of each object matching the phrase. Phrases that have no matching objects (negative prompts) have no masks, shown in red font in the figure. See the linked READMEs for more details on how to download and run evaluations on the datasets.
* HuggingFace host: [SA-Co/Gold](https://huggingface.co/datasets/facebook/SACo-Gold), [SA-Co/Silver](https://huggingface.co/datasets/facebook/SACo-Silver) and [SA-Co/VEval](https://huggingface.co/datasets/facebook/SACo-VEval)
* Roboflow host: [SA-Co/Gold](https://universe.roboflow.com/sa-co-gold), [SA-Co/Silver](https://universe.roboflow.com/sa-co-silver) and [SA-Co/VEval](https://universe.roboflow.com/sa-co-veval)

## Development
To set up the development environment:
```bash
pip install -e ".[dev,train]"
```
To format the code:
```bash
ufmt format .
```
## Contributing
See [contributing](CONTRIBUTING.md) and the
[code of conduct](CODE_OF_CONDUCT.md).
## License
This project is licensed under the SAM License - see the [LICENSE](LICENSE) file
for details.
## Acknowledgements
We would like to thank the following people for their contributions to the SAM 3 project: Alex He, Alexander Kirillov,
Alyssa Newcomb, Ana Paula Kirschner Mofarrej, Andrea Madotto, Andrew Westbury, Ashley Gabriel, Azita Shokpour,
Ben Samples, Bernie Huang, Carleigh Wood, Ching-Feng Yeh, Christian Puhrsch, Claudette Ward, Daniel Bolya,
Daniel Li, Facundo Figueroa, Fazila Vhora, George Orlin, Hanzi Mao, Helen Klein, Hu Xu, Ida Cheng, Jake Kinney,
Jiale Zhi, Jo Sampaio, Joel Schlosser, Justin Johnson, Kai Brown, Karen Bergan, Karla Martucci, Kenny Lehmann,
Maddie Mintz, Mallika Malhotra, Matt Ward, Michelle Chan, Michelle Restrepo, Miranda Hartley, Muhammad Maaz,
Nisha Deo, Peter Park, Phillip Thomas, Raghu Nayani, Rene Martinez Doehner, Robbie Adkins, Ross Girshik, Sasha
Mitts, Shashank Jain, Spencer Whitehead, Ty Toledano, Valentin Gabeur, Vincent Cho, Vivian Lee, William Ngan,
Xuehai He, Yael Yungster, Ziqi Pang, Ziyi Dou, Zoe Quake.
<!-- ## Citing SAM 3
If you use SAM 3 or the SA-Co dataset in your research, please use the following BibTeX entry.
```bibtex
TODO
``` -->
|