Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,35 +7,39 @@ import pandas as pd
|
|
| 7 |
# Set a seed for reproducibility
|
| 8 |
set_seed(42)
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"HuggingFaceH4/zephyr-7b-beta",
|
| 18 |
-
"01-ai/Yi-34B",
|
| 19 |
-
"deepseek-ai/deepseek-llm-67b-base",
|
| 20 |
-
"HuggingFaceH4/zephyr-7b-alpha",
|
| 21 |
-
"microsoft/Marcoroni-7B-v3"
|
| 22 |
]
|
| 23 |
|
| 24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
grammar_model_names = [
|
| 26 |
"vennify/t5-base-grammar-correction",
|
| 27 |
"hassaanik/grammar-correction-model"
|
| 28 |
]
|
| 29 |
|
| 30 |
-
#
|
| 31 |
def load_generation_pipeline(model_name):
|
| 32 |
try:
|
|
|
|
| 33 |
return pipeline("text-generation", model=model_name)
|
| 34 |
except Exception as e:
|
| 35 |
print(f"Error loading generation model {model_name}: {e}")
|
| 36 |
return None
|
| 37 |
|
| 38 |
-
# Load a grammar evaluation pipeline (text2text-generation)
|
| 39 |
def load_grammar_pipeline(model_name):
|
| 40 |
try:
|
| 41 |
return pipeline("text2text-generation", model=model_name)
|
|
@@ -43,19 +47,14 @@ def load_grammar_pipeline(model_name):
|
|
| 43 |
print(f"Error loading grammar model {model_name}: {e}")
|
| 44 |
return None
|
| 45 |
|
| 46 |
-
# Pre-load grammar evaluator
|
| 47 |
rater_models = []
|
| 48 |
for model_name in grammar_model_names:
|
| 49 |
p = load_grammar_pipeline(model_name)
|
| 50 |
if p is not None:
|
| 51 |
rater_models.append(p)
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
languages = {
|
| 55 |
-
"en": "English", "es": "Spanish", "fr": "French", "de": "German", "it": "Italian",
|
| 56 |
-
"pt": "Portuguese", "ru": "Russian", "ar": "Arabic", "hi": "Hindi", "ja": "Japanese"
|
| 57 |
-
}
|
| 58 |
-
|
| 59 |
def clean_text(text):
|
| 60 |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
|
| 61 |
|
|
@@ -73,63 +72,67 @@ def extract_score(text):
|
|
| 73 |
return min(max(score, 0), 100)
|
| 74 |
return 0
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
gen_model = load_generation_pipeline(selected_model)
|
| 79 |
-
if gen_model is None:
|
| 80 |
-
return "Error loading generation model."
|
| 81 |
-
|
| 82 |
results = []
|
| 83 |
-
for
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
scores = []
|
| 97 |
-
for rater in rater_models:
|
| 98 |
-
rprompt = grammar_prompt(gen_output, lang)
|
| 99 |
try:
|
| 100 |
-
|
| 101 |
-
rtext = rater(rprompt, max_new_tokens=10)[0]['generated_text']
|
| 102 |
-
score = extract_score(rtext)
|
| 103 |
-
scores.append(score)
|
| 104 |
except Exception as e:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
|
| 120 |
return gr.Dataframe(df)
|
| 121 |
|
| 122 |
-
# Build
|
| 123 |
-
with gr.Blocks(title="
|
| 124 |
-
gr.Markdown("#
|
| 125 |
-
gr.Markdown("
|
| 126 |
|
| 127 |
with gr.Row():
|
| 128 |
-
|
| 129 |
-
run_button = gr.Button("Run Benchmark")
|
| 130 |
-
|
| 131 |
output_table = gr.Dataframe(label="Benchmark Results")
|
| 132 |
|
| 133 |
-
run_button.click(fn=
|
| 134 |
|
| 135 |
demo.launch()
|
|
|
|
| 7 |
# Set a seed for reproducibility
|
| 8 |
set_seed(42)
|
| 9 |
|
| 10 |
+
# Define five small models for generation (free, lightweight)
|
| 11 |
+
small_models = [
|
| 12 |
+
"distilgpt2", # ~82M parameters
|
| 13 |
+
"gpt2", # ~124M parameters
|
| 14 |
+
"EleutherAI/gpt-neo-125M", # ~125M parameters
|
| 15 |
+
"sshleifer/tiny-gpt2", # extremely small variant
|
| 16 |
+
"microsoft/DialoGPT-small" # dialoGPT in small size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
]
|
| 18 |
|
| 19 |
+
# Define five languages (English, German, Spanish, French, Portuguese)
|
| 20 |
+
languages = {
|
| 21 |
+
"en": "English",
|
| 22 |
+
"de": "German",
|
| 23 |
+
"es": "Spanish",
|
| 24 |
+
"fr": "French",
|
| 25 |
+
"pt": "Portuguese"
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# Define two cost-effective grammar evaluation models
|
| 29 |
grammar_model_names = [
|
| 30 |
"vennify/t5-base-grammar-correction",
|
| 31 |
"hassaanik/grammar-correction-model"
|
| 32 |
]
|
| 33 |
|
| 34 |
+
# Functions to load pipelines on demand
|
| 35 |
def load_generation_pipeline(model_name):
|
| 36 |
try:
|
| 37 |
+
# Use text-generation pipeline for causal LM models
|
| 38 |
return pipeline("text-generation", model=model_name)
|
| 39 |
except Exception as e:
|
| 40 |
print(f"Error loading generation model {model_name}: {e}")
|
| 41 |
return None
|
| 42 |
|
|
|
|
| 43 |
def load_grammar_pipeline(model_name):
|
| 44 |
try:
|
| 45 |
return pipeline("text2text-generation", model=model_name)
|
|
|
|
| 47 |
print(f"Error loading grammar model {model_name}: {e}")
|
| 48 |
return None
|
| 49 |
|
| 50 |
+
# Pre-load grammar evaluator pipelines
|
| 51 |
rater_models = []
|
| 52 |
for model_name in grammar_model_names:
|
| 53 |
p = load_grammar_pipeline(model_name)
|
| 54 |
if p is not None:
|
| 55 |
rater_models.append(p)
|
| 56 |
|
| 57 |
+
# Utility functions for checking palindromes and cleaning text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def clean_text(text):
|
| 59 |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
|
| 60 |
|
|
|
|
| 72 |
return min(max(score, 0), 100)
|
| 73 |
return 0
|
| 74 |
|
| 75 |
+
# Main benchmark function that runs all tests at once
|
| 76 |
+
def run_benchmark_all():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
results = []
|
| 78 |
+
for model_name in small_models:
|
| 79 |
+
# Load the generation pipeline for the current small model
|
| 80 |
+
gen_pipeline = load_generation_pipeline(model_name)
|
| 81 |
+
if gen_pipeline is None:
|
| 82 |
+
continue # Skip if model fails to load
|
| 83 |
+
|
| 84 |
+
for code, lang in languages.items():
|
| 85 |
+
# Prompt for generating a palindrome in the given language
|
| 86 |
+
prompt = (
|
| 87 |
+
f"Write the longest original palindrome you can in {lang}. "
|
| 88 |
+
"It should be creative and not a known palindrome. "
|
| 89 |
+
"If it is not a correct palindrome, you will lose points according to how correct it is."
|
| 90 |
+
)
|
|
|
|
|
|
|
|
|
|
| 91 |
try:
|
| 92 |
+
gen_output = gen_pipeline(prompt, max_new_tokens=50, do_sample=True)[0]['generated_text'].strip()
|
|
|
|
|
|
|
|
|
|
| 93 |
except Exception as e:
|
| 94 |
+
gen_output = f"Error generating text: {e}"
|
| 95 |
+
|
| 96 |
+
valid = is_palindrome(gen_output)
|
| 97 |
+
cleaned_len = len(clean_text(gen_output))
|
| 98 |
+
|
| 99 |
+
# Measure grammar evaluation using both rater models
|
| 100 |
+
scores = []
|
| 101 |
+
for rater in rater_models:
|
| 102 |
+
rprompt = grammar_prompt(gen_output, lang)
|
| 103 |
+
try:
|
| 104 |
+
rtext = rater(rprompt, max_new_tokens=10)[0]['generated_text']
|
| 105 |
+
score = extract_score(rtext)
|
| 106 |
+
scores.append(score)
|
| 107 |
+
except Exception as e:
|
| 108 |
+
scores.append(0)
|
| 109 |
+
avg_score = np.mean(scores) if scores else 0
|
| 110 |
+
# Apply a penalty if the text is not a valid palindrome
|
| 111 |
+
penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5
|
| 112 |
+
final_score = round(cleaned_len * penalty, 2)
|
| 113 |
+
|
| 114 |
+
results.append({
|
| 115 |
+
"Model": model_name,
|
| 116 |
+
"Language": lang,
|
| 117 |
+
"Palindrome": gen_output,
|
| 118 |
+
"Valid": "✅" if valid else "❌",
|
| 119 |
+
"Length": cleaned_len,
|
| 120 |
+
"Grammar Score": avg_score,
|
| 121 |
+
"Final Score": final_score
|
| 122 |
+
})
|
| 123 |
|
| 124 |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
|
| 125 |
return gr.Dataframe(df)
|
| 126 |
|
| 127 |
+
# Build Gradio UI using Blocks (canvas layout)
|
| 128 |
+
with gr.Blocks(title="Small Model Palindrome Benchmark") as demo:
|
| 129 |
+
gr.Markdown("# Small Model Palindrome Benchmark")
|
| 130 |
+
gr.Markdown("This benchmark runs automatically during the night over 5 small text-generation models and 5 languages (English, German, Spanish, French, Portuguese). All tests are run at once.")
|
| 131 |
|
| 132 |
with gr.Row():
|
| 133 |
+
run_button = gr.Button("Run All Benchmarks")
|
|
|
|
|
|
|
| 134 |
output_table = gr.Dataframe(label="Benchmark Results")
|
| 135 |
|
| 136 |
+
run_button.click(fn=run_benchmark_all, inputs=[], outputs=output_table)
|
| 137 |
|
| 138 |
demo.launch()
|