File size: 49,109 Bytes
48abd32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
"""
Interactive Visualization Module for TimesFM Forecasting using Plotly

This module provides comprehensive interactive visualization capabilities for TimesFM forecasting,
including professional-grade plots with prediction intervals, covariates displays,
and publication-ready styling using Plotly for enhanced interactivity.

Key Features:
- Interactive forecast visualizations with seamless connections
- Prediction intervals with customizable confidence levels
- Covariates subplots integration
- Sapheneia-style professional formatting
- Interactive zoom, pan, and hover capabilities
- Export capabilities for presentations and publications
- Responsive design for web applications
"""

import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from plotly.offline import plot
from datetime import datetime
from typing import List, Dict, Optional, Union
import logging
import json

logger = logging.getLogger(__name__)


class InteractiveVisualizer:
    """
    Interactive visualization class for TimesFM forecasting results using Plotly.
    
    This class provides methods to create interactive, publication-quality visualizations
    of forecasting results, including prediction intervals, covariates analysis,
    and comprehensive time series plots with enhanced user interaction.
    
    Example:
        >>> viz = InteractiveVisualizer()
        >>> fig = viz.plot_forecast_with_intervals(
        ...     historical_data=historical,
        ...     forecast=point_forecast,
        ...     intervals=prediction_intervals,
        ...     title="Bitcoin Price Forecast"
        ... )
        >>> fig.show()
    """
    
    def __init__(self, style: str = "professional", theme: str = "plotly_white"):
        """
        Initialize the InteractiveVisualizer with specified styling.
        
        Args:
            style: Visualization style ("professional", "minimal", "presentation")
            theme: Plotly theme ("plotly", "plotly_white", "plotly_dark", "ggplot2", "seaborn", "simple_white")
        """
        self.style = style
        self.theme = theme
        self._setup_style()
        logger.info(f"InteractiveVisualizer initialized with '{style}' style and '{theme}' theme")
    
    def _setup_style(self) -> None:
        """Set up the visualization style and parameters."""
        if self.style == "professional":
            # Sapheneia professional style
            self.colors = {
                'historical': '#1f77b4',
                'forecast': '#d62728', 
                'actual': '#2ca02c',
                'interval_80': 'rgba(255, 179, 102, 0.3)',
                'interval_50': 'rgba(255, 127, 14, 0.5)',
                'grid': '#e0e0e0',
                'background': '#fafafa',
                'text': '#2c3e50',
                'axis': '#34495e'
            }
            self.layout_config = {
                'width': 1200,
                'height': 800,
                'margin': {'l': 60, 'r': 60, 't': 80, 'b': 60}
            }
            
        elif self.style == "minimal":
            # Clean minimal style
            self.colors = {
                'historical': '#2E86AB',
                'forecast': '#A23B72',
                'actual': '#F18F01',
                'interval_80': 'rgba(199, 62, 29, 0.3)',
                'interval_50': 'rgba(241, 143, 1, 0.5)',
                'grid': '#f0f0f0',
                'background': 'white',
                'text': '#2c3e50',
                'axis': '#34495e'
            }
            self.layout_config = {
                'width': 1000,
                'height': 700,
                'margin': {'l': 50, 'r': 50, 't': 60, 'b': 50}
            }
            
        else:  # presentation
            # High contrast for presentations
            self.colors = {
                'historical': '#003f5c',
                'forecast': '#ff6361',
                'actual': '#58508d',
                'interval_80': 'rgba(255, 166, 0, 0.3)',
                'interval_50': 'rgba(255, 99, 97, 0.5)',
                'grid': '#e8e8e8',
                'background': 'white',
                'text': '#2c3e50',
                'axis': '#34495e'
            }
            self.layout_config = {
                'width': 1400,
                'height': 900,
                'margin': {'l': 70, 'r': 70, 't': 100, 'b': 70}
            }
    
    def _create_base_layout(self, title: str, x_title: str = "Time", y_title: str = "Value") -> Dict:
        """Create base layout configuration for plots."""
        return {
            'title': {
                'text': title,
                'x': 0.5,
                'xanchor': 'center',
                'font': {'size': 18, 'color': self.colors['text']}
            },
            'xaxis': {
                'title': {'text': x_title, 'font': {'size': 14, 'color': self.colors['axis']}},
                'tickfont': {'size': 12, 'color': self.colors['axis']},
                'gridcolor': self.colors['grid'],
                'showgrid': True,
                'zeroline': False
            },
            'yaxis': {
                'title': {'text': y_title, 'font': {'size': 14, 'color': self.colors['axis']}},
                'tickfont': {'size': 12, 'color': self.colors['axis']},
                'gridcolor': self.colors['grid'],
                'showgrid': True,
                'zeroline': False
            },
            'plot_bgcolor': self.colors['background'],
            'paper_bgcolor': 'white',
            'font': {'family': 'Arial, sans-serif', 'color': self.colors['text']},
            'showlegend': True,
            'legend': {
                'x': 0.02,
                'y': 0.98,
                'yanchor': 'top',
                'bgcolor': 'rgba(255, 255, 255, 0.8)',
                'bordercolor': 'rgba(0, 0, 0, 0.2)',
                'borderwidth': 1
            },
            'hovermode': 'x unified',
            **self.layout_config
        }
    
    def plot_forecast_with_intervals(
        self,
        historical_data: Union[List[float], np.ndarray],
        forecast: Union[List[float], np.ndarray], 
        intervals: Optional[Dict[str, np.ndarray]] = None,
        actual_future: Optional[Union[List[float], np.ndarray]] = None,
        dates_historical: Optional[List[Union[str, datetime]]] = None,
        dates_future: Optional[List[Union[str, datetime]]] = None,
        title: str = "TimesFM Forecast with Prediction Intervals",
        target_name: str = "Value",
        save_path: Optional[str] = None,
        show_figure: bool = True,
        context_len: Optional[int] = None,
        horizon_len: Optional[int] = None,
        y_axis_padding: float = 0.1
    ) -> go.Figure:
        """
        Create an interactive forecast visualization with prediction intervals.
        
        Args:
            historical_data: Historical time series data
            forecast: Point forecast values
            intervals: Dictionary containing prediction intervals
            actual_future: Optional actual future values for comparison
            dates_historical: Optional dates for historical data
            dates_future: Optional dates for forecast period
            title: Plot title
            target_name: Name of the target variable
            save_path: Optional path to save the plot (HTML format)
            show_figure: Whether to display the figure
            context_len: Length of context window for default view focus
            horizon_len: Length of horizon for default view focus
            y_axis_padding: Padding factor for focused y-axis range (0.1 = 10% padding)
            
        Returns:
            Plotly Figure object
        """
        logger.info(f"Creating interactive forecast visualization: {title}")
        
        # Convert to numpy arrays
        if actual_future is not None:
            actual_future = np.array(actual_future)
        
        # Setup time axis
        if dates_historical is None:
            historical_x = np.arange(len(historical_data))
        else:
            historical_x = pd.to_datetime(dates_historical)
        
        future_x = np.arange(
            len(historical_data), len(historical_data) + len(forecast)
            ) if dates_future is None else pd.to_datetime(dates_future)
                
        # Calculate default view range (context + horizon)
        if context_len is not None and horizon_len is not None:
            if dates_historical is not None:
                start_date = historical_x[0]
                end_date = future_x[min(horizon_len - 1, len(future_x) - 1)] if len(future_x) > 0 else historical_x[-1]
                default_x_range = [start_date, end_date]
            else:
                start_idx = 0
                end_idx = len(historical_x) + len(forecast)
                default_x_range = [start_idx, end_idx]
        else:
            # No specific focus, show all data
            if dates_historical is not None:
                start_date = historical_x[0]
                end_date = future_x[-1] if len(future_x) > 0 else historical_x[-1]
                default_x_range = [start_date, end_date]
            else:
                start_idx = 0
                end_idx = len(historical_x) + len(forecast)
                default_x_range = [start_idx, end_idx]
        
        # Calculate focused y-axis range for better visibility
        if context_len is not None and horizon_len is not None:
            # Focus y-axis on the context + horizon period data
            if context_len < len(historical_data):
                # Get the data range for context + horizon
                context_data = historical_data[-context_len:]
                focused_data = np.concatenate([context_data, forecast])
                
                # Include prediction intervals in y-axis calculation
                if intervals:
                    # Collect all interval data for y-axis range calculation
                    interval_data = []
                    
                    # Add 50th percentile if available
                    if 'lower_50' in intervals and 'upper_50' in intervals:
                        interval_data.extend(intervals['lower_50'])
                        interval_data.extend(intervals['upper_50'])
                    
                    # Add 80th percentile if available
                    if 'lower_80' in intervals and 'upper_80' in intervals:
                        interval_data.extend(intervals['lower_80'])
                        interval_data.extend(intervals['upper_80'])
                    
                    # Add other confidence levels
                    for key in intervals.keys():
                        if key.startswith('lower_') and key not in ['lower_50', 'lower_80']:
                            interval_data.extend(intervals[key])
                        elif key.startswith('upper_') and key not in ['upper_50', 'upper_80']:
                            interval_data.extend(intervals[key])
                    
                    # Add quantile bands
                    for key in intervals.keys():
                        if key.startswith('quantile_band_') and key.endswith('_lower'):
                            interval_data.extend(intervals[key])
                        elif key.startswith('quantile_band_') and key.endswith('_upper'):
                            interval_data.extend(intervals[key])
                    
                    # Include interval data in range calculation
                    if interval_data:
                        interval_data = np.array(interval_data)
                        all_focused_data = np.concatenate([focused_data, interval_data])
                    else:
                        all_focused_data = focused_data
                else:
                    all_focused_data = focused_data
                
                # Calculate y-axis range including intervals
                data_min = np.min(all_focused_data)
                data_max = np.max(all_focused_data)
                data_range = data_max - data_min
                padding = data_range * y_axis_padding
                
                default_y_range = [data_min - padding, data_max + padding]
            else:
                # If context_len >= historical_data length, use all data
                all_data = np.concatenate([historical_x, forecast])
                
                # Include prediction intervals in y-axis calculation
                if intervals:
                    interval_data = []
                    
                    # Add 50th percentile if available
                    if 'lower_50' in intervals and 'upper_50' in intervals:
                        interval_data.extend(intervals['lower_50'])
                        interval_data.extend(intervals['upper_50'])
                    
                    # Add 80th percentile if available
                    if 'lower_80' in intervals and 'upper_80' in intervals:
                        interval_data.extend(intervals['lower_80'])
                        interval_data.extend(intervals['upper_80'])
                    
                    # Add other confidence levels
                    for key in intervals.keys():
                        if key.startswith('lower_') and key not in ['lower_50', 'lower_80']:
                            interval_data.extend(intervals[key])
                        elif key.startswith('upper_') and key not in ['upper_50', 'upper_80']:
                            interval_data.extend(intervals[key])
                    
                    # Add quantile bands
                    for key in intervals.keys():
                        if key.startswith('quantile_band_') and key.endswith('_lower'):
                            interval_data.extend(intervals[key])
                        elif key.startswith('quantile_band_') and key.endswith('_upper'):
                            interval_data.extend(intervals[key])
                    
                    # Include interval data in range calculation
                    if interval_data:
                        interval_data = np.array(interval_data)
                        all_data = np.concatenate([all_data, interval_data])
                
                data_min = np.min(all_data)
                data_max = np.max(all_data)
                data_range = data_max - data_min
                padding = data_range * y_axis_padding
                
                default_y_range = [data_min - padding, data_max + padding]
        else:
            # No focused y-axis, let Plotly auto-scale
            default_y_range = None
        
        # Create figure
        fig = go.Figure()
        
        # Debug logging for historical data
        print(f"DEBUG: Historical data length: {len(historical_data)}")
        print(f"DEBUG: Historical data type: {type(historical_data)}")
        print(f"DEBUG: Historical data first 5: {historical_data[:5] if len(historical_data) > 0 else 'Empty'}")
        print(f"DEBUG: Historical data last 5: {historical_data[-5:] if len(historical_data) > 0 else 'Empty'}")
        print(f"DEBUG: Historical x length: {len(historical_x)}")
        print(f"DEBUG: Historical x first 5: {historical_x[:5] if len(historical_x) > 0 else 'Empty'}")
        
        # Validate data before plotting
        if len(historical_data) == 0:
            print("ERROR: Historical data is empty!")
            return None
        
        if len(historical_x) == 0:
            print("ERROR: Historical x-axis data is empty!")
            return None
        
        if len(historical_data) != len(historical_x):
            print(f"ERROR: Mismatch between historical data ({len(historical_data)}) and x-axis ({len(historical_x)}) lengths!")
            return None
        
        # Plot historical data
        print(f"DEBUG: About to plot historical data with {len(historical_data)} points")
        print(f"DEBUG: Historical data sample: {historical_data[:3]}...{historical_data[-3:]}")
        print(f"DEBUG: Historical x sample: {historical_x[:3]}...{historical_x[-3:]}")
        
        historical_trace = go.Scatter(
            x=historical_x,
            y=historical_data,
            mode='lines',
            name='Historical Data',
            line=dict(color=self.colors['historical'], width=3),
            hovertemplate='<b>Historical</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
        )
        
        print(f"DEBUG: Historical trace created: {historical_trace}")
        fig.add_trace(historical_trace)
        print(f"DEBUG: Historical trace added to figure. Figure has {len(fig.data)} traces")

        # Create seamless connection for forecast
        if dates_historical is None:
            connection_x = [len(historical_x) - 1] + list(future_x)
        else:
            connection_x = [historical_x[-1]] + list(future_x)
        
        # Plot quantile intervals if available
        if intervals:
            # Handle different types of intervals
            if 'lower_80' in intervals and 'upper_80' in intervals:
                # Traditional confidence intervals
                interval_lower = [historical_data[-1]] + list(intervals['lower_80'])
                interval_upper = [historical_data[-1]] + list(intervals['upper_80'])
                
                fig.add_trace(go.Scatter(
                    x=connection_x,
                    y=interval_upper,
                    mode='lines',
                    line=dict(width=0),
                    showlegend=False,
                    hoverinfo='skip'
                ))
                
                fig.add_trace(go.Scatter(
                    x=connection_x,
                    y=interval_lower,
                    mode='lines',
                    line=dict(width=0),
                    fill='tonexty',
                    fillcolor=self.colors['interval_80'],
                    name='80% Prediction Interval',
                    hovertemplate='<b>80% Interval</b><br>Time: %{x}<br>Upper: %{y:.2f}<extra></extra>'
                ))
                               
                # Add 50% interval if available
                if 'lower_50' in intervals and 'upper_50' in intervals:
                    interval_lower_50 = [historical_data[-1]] + list(intervals['lower_50'])
                    interval_upper_50 = [historical_data[-1]] + list(intervals['upper_50'])
                    
                    fig.add_trace(go.Scatter(
                        x=connection_x,
                        y=interval_upper_50,
                        mode='lines',
                        line=dict(width=0),
                        showlegend=False,
                        hoverinfo='skip'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=connection_x,
                        y=interval_lower_50,
                        mode='lines',
                        line=dict(width=0),
                        fill='tonexty',
                        fillcolor=self.colors['interval_50'],
                        name='50% Prediction Interval',
                        hovertemplate='<b>50% Interval</b><br>Time: %{x}<br>Upper: %{y:.2f}<extra></extra>'
                    ))
            
            else:
                # Check for generic confidence levels
                conf_levels = []
                for key in intervals.keys():
                    if key.startswith('lower_'):
                        conf_level = key.split('_')[1]
                        if f'upper_{conf_level}' in intervals:
                            conf_levels.append(int(conf_level))
                
                conf_levels.sort(reverse=True)  # Largest first for layering
                
                for conf_level in conf_levels:
                    lower_key = f'lower_{conf_level}'
                    upper_key = f'upper_{conf_level}'
                    
                    if lower_key in intervals and upper_key in intervals:
                        # Create seamless intervals
                        interval_lower = [historical_data[-1]] + list(intervals[lower_key])
                        interval_upper = [historical_data[-1]] + list(intervals[upper_key])
                        
                        alpha = 0.3 if conf_level == max(conf_levels) else 0.5
                        color = self.colors['interval_80'] if conf_level >= 80 else self.colors['interval_50']
                        
                        fig.add_trace(go.Scatter(
                            x=connection_x,
                            y=interval_upper,
                            mode='lines',
                            line=dict(width=0),
                            showlegend=False,
                            hoverinfo='skip'
                        ))
                        
                        fig.add_trace(go.Scatter(
                            x=connection_x,
                            y=interval_lower,
                            mode='lines',
                            line=dict(width=0),
                            fill='tonexty',
                            fillcolor=color,
                            name=f'{conf_level}% Prediction Interval',
                            hovertemplate=f'<b>{conf_level}% Interval</b><br>Time: %{{x}}<br>Upper: %{{y:.2f}}<extra></extra>'
                        ))
            
            # Handle quantile bands (new format)
            quantile_bands = {}
            for key in intervals.keys():
                if key.startswith('quantile_band_') and key.endswith('_lower'):
                    band_name = key.replace('quantile_band_', '').replace('_lower', '')
                    upper_key = f'quantile_band_{band_name}_upper'
                    if upper_key in intervals:
                        quantile_bands[band_name] = {
                            'lower': intervals[key],
                            'upper': intervals[upper_key]
                        }
            
            if quantile_bands:
                # Define colors for different bands
                band_colors = ['rgba(255, 153, 153, 0.3)', 'rgba(153, 204, 255, 0.3)', 
                               'rgba(153, 255, 153, 0.3)', 'rgba(255, 204, 153, 0.3)', 
                               'rgba(204, 153, 255, 0.3)', 'rgba(255, 255, 153, 0.3)']
                
                for i, (band_name, band_data) in enumerate(sorted(quantile_bands.items())):
                    color = band_colors[i % len(band_colors)]
                    
                    interval_lower = [historical_data[-1]] + list(band_data['lower'])
                    interval_upper = [historical_data[-1]] + list(band_data['upper'])
                    
                    label_key = f'quantile_band_{band_name}_label'
                    label_text = intervals.get(label_key, f'Quantile Band {int(band_name)+1}')
                    
                    fig.add_trace(go.Scatter(
                        x=connection_x,
                        y=interval_upper,
                        mode='lines',
                        line=dict(width=0),
                        showlegend=False,
                        hoverinfo='skip'
                    ))
                    
                    fig.add_trace(go.Scatter(
                        x=connection_x,
                        y=interval_lower,
                        mode='lines',
                        line=dict(width=0),
                        fill='tonexty',
                        fillcolor=color,
                        name=label_text,
                        hovertemplate=f'<b>{label_text}</b><br>Upper: %{{y:.2f}}<extra></extra>'
                    ))
        
        fig.add_trace(go.Scatter(
            x=future_x,
            y=forecast,
            mode='lines',
            name='Point Forecast',
            line=dict(color=self.colors['forecast'], width=3, dash='dash'),
            hovertemplate='<b>Forecast</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>',
            legendgroup='forecast'
        ))

        # 2) a 2-point seamless bridge with no hover/legend
        fig.add_trace(go.Scatter(
            x=[historical_x[-1], future_x[0]],
            y=[historical_data[-1], forecast[0]],
            mode='lines',
            line=dict(color=self.colors['forecast'], width=3, dash='dash'),
            hoverinfo='skip',
            showlegend=False,
            legendgroup='forecast'
        ))
        
        # Plot actual future data if available
        if actual_future is not None:
            print(f"DEBUG: Plotting actual future values")
            print(f"DEBUG: actual_future length: {len(actual_future)}")
            print(f"DEBUG: actual_future sample: {actual_future[:3] if len(actual_future) > 0 else 'Empty'}")
            print(f"DEBUG: dates_future length: {len(dates_future) if dates_future else 'None'}")
            print(f"DEBUG: dates_future sample: {dates_future[:3] if dates_future and len(dates_future) > 0 else 'Empty'}")
            print(f"DEBUG: historical_x last value: {historical_x[-1]}")
            print(f"DEBUG: future_x first value: {future_x[0] if len(future_x) > 0 else 'Empty'}")
            
            actual_connection = [historical_x[-1]] + list(actual_future)
            fig.add_trace(go.Scatter(
                x=connection_x,
                y=actual_connection,
                mode='lines+markers',
                name='Actual Future',
                line=dict(color=self.colors['actual'], width=3),
                marker=dict(size=8, color=self.colors['actual'], 
                           line=dict(width=2, color='white')),
                hovertemplate='<b>Actual Future</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>',
                legendgroup='actual'
            ))
            print([historical_x[-1], connection_x[0]])
            print([historical_data[-1], actual_connection[0]])

            # 2) a 2-point seamless bridge with no hover/legend
            fig.add_trace(go.Scatter(
                x=[historical_x[-1], connection_x[1]],
                y=[historical_data[-1], actual_connection[1]],
                mode='lines',
                line=dict(color=self.colors['actual'], width=3),
                marker=dict(size=8, color=self.colors['actual'], 
                           line=dict(width=2, color='white')),
                hoverinfo='skip',
                showlegend=False,
                legendgroup='actual'
            ))
        
        # Add forecast start line
        fig.add_vline(
            x=pd.to_datetime(historical_x[-1]).to_pydatetime(),  # or .isoformat()
            line_dash="dot", line_color="gray", line_width=1
        )
        fig.add_annotation(
            x=pd.to_datetime(historical_x[-1]).to_pydatetime(),
            y=1,                 # top of plotting area
            xref="x",
            yref="paper",
            text="Forecast Start",
            showarrow=False,
            yanchor="bottom"
        )
        
        # Apply layout
        layout = self._create_base_layout(title, "Time", target_name)
        
        # Add default view range if specified
        if context_len is not None and horizon_len is not None:
            layout['xaxis']['range'] = default_x_range
            
        # Add focused y-axis range if specified
        if default_y_range is not None:
            layout['yaxis']['range'] = default_y_range
        
        # Add timestamp
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M")
        layout['annotations'] = [{
            'x': 1,
            'y': -0.1,
            'xref': 'paper',
            'yref': 'paper',
            'text': f'Generated: {timestamp}',
            'showarrow': False,
            'font': {'size': 10, 'color': 'gray'}
        }]
        
        fig.update_layout(**layout)
        
        # Save if requested
        if save_path:
            if save_path.endswith('.html'):
                fig.write_html(save_path)
            else:
                fig.write_image(save_path)
            logger.info(f"Interactive plot saved to: {save_path}")
        
        # Debug final figure
        print(f"DEBUG: Final figure has {len(fig.data)} traces")
        for i, trace in enumerate(fig.data):
            print(f"DEBUG: Trace {i}: name='{trace.name}', type='{trace.type}', visible={trace.visible}")
            if hasattr(trace, 'y') and trace.y is not None:
                print(f"DEBUG: Trace {i} y-data length: {len(trace.y) if hasattr(trace.y, '__len__') else 'scalar'}")
        
        # Show figure if requested
        if show_figure:
            fig.show()
        
        logger.info("βœ… Interactive forecast visualization completed")
        return fig
    
    def plot_forecast_with_covariates(
        self,
        historical_data: Union[List[float], np.ndarray],
        forecast: Union[List[float], np.ndarray],
        covariates_data: Dict[str, Dict[str, Union[List[float], float, str]]],
        intervals: Optional[Dict[str, np.ndarray]] = None,
        actual_future: Optional[Union[List[float], np.ndarray]] = None,
        dates_historical: Optional[List[Union[str, datetime]]] = None,
        dates_future: Optional[List[Union[str, datetime]]] = None,
        title: str = "TimesFM Forecast with Covariates Analysis",
        target_name: str = "Target Value",
        save_path: Optional[str] = None,
        show_figure: bool = True,
        context_len: Optional[int] = None,
        horizon_len: Optional[int] = None,
        show_full_history: bool = True,
        y_axis_padding: float = 0.1
    ) -> go.Figure:
        """
        Create a comprehensive interactive visualization with main forecast and covariates subplots.
        
        Args:
            historical_data: Historical time series data
            forecast: Point forecast values
            covariates_data: Dictionary containing covariates information
            intervals: Optional prediction intervals
            actual_future: Optional actual future values
            dates_historical: Optional historical dates
            dates_future: Optional future dates
            title: Main plot title
            target_name: Name of target variable
            save_path: Optional save path
            show_figure: Whether to display the figure
            context_len: Length of context window for default view focus
            horizon_len: Length of horizon for default view focus
            show_full_history: Whether to show full historical data (True) or just context (False)
            
        Returns:
            Plotly Figure object
        """
        logger.info(f"Creating comprehensive interactive forecast with covariates: {title}")
        
        # Count covariates for subplot layout
        num_covariates = len([k for k, v in covariates_data.items() 
                             if isinstance(v, dict) and 'historical' in v])
        
        # Create subplot layout
        if num_covariates == 0:
            return self.plot_forecast_with_intervals(
                historical_data, forecast, intervals, actual_future,
                dates_historical, dates_future, title, target_name, save_path, show_figure,
                context_len, horizon_len, show_full_history, y_axis_padding
            )
        
        # Determine grid layout
        if num_covariates <= 2:
            rows, cols = 2, 2
            subplot_titles = [title] + [f'{name.replace("_", " ").title()}' 
                                      for name in list(covariates_data.keys())[:3]]
        elif num_covariates <= 4:
            rows, cols = 3, 2  
            subplot_titles = [title] + [f'{name.replace("_", " ").title()}' 
                                      for name in list(covariates_data.keys())[:5]]
        else:
            rows, cols = 4, 2
            subplot_titles = [title] + [f'{name.replace("_", " ").title()}' 
                                      for name in list(covariates_data.keys())[:7]]
        
        # Create subplots
        fig = make_subplots(
            rows=rows, cols=cols,
            subplot_titles=subplot_titles,
            vertical_spacing=0.08,
            horizontal_spacing=0.1
        )
        
        # Convert data
        historical_data = np.array(historical_data)
        forecast = np.array(forecast)
        
        # Setup time axes
        if dates_historical is None:
            historical_x = np.arange(len(historical_data))
            future_x = np.arange(len(historical_data), len(historical_data) + len(forecast))
        else:
            historical_x = pd.to_datetime(dates_historical)
            future_x = pd.to_datetime(dates_future) if dates_future is not None else None
        
        # Plot main forecast (similar to single plot method)
        # Historical data
        fig.add_trace(go.Scatter(
            x=historical_x,
            y=historical_data,
            mode='lines',
            name='Historical Data',
            line=dict(color=self.colors['historical'], width=3),
            hovertemplate='<b>Historical</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
        ), row=1, col=1)
        
        # Forecast with seamless connection
        if dates_historical is None:
            connection_x = [len(historical_data) - 1] + list(future_x)
        else:
            connection_x = [historical_x[-1]] + list(future_x)
        connection_forecast = [historical_data[-1]] + list(forecast)
        
        # Plot intervals if available
        if intervals:
            for key in intervals.keys():
                if key.startswith('lower_'):
                    conf_level = key.split('_')[1]
                    upper_key = f'upper_{conf_level}'
                    if upper_key in intervals:
                        interval_lower = [historical_data[-1]] + list(intervals[key])
                        interval_upper = [historical_data[-1]] + list(intervals[upper_key])
                        
                        alpha = 0.3 if int(conf_level) >= 80 else 0.5
                        color = self.colors['interval_80'] if int(conf_level) >= 80 else self.colors['interval_50']
                        
                        fig.add_trace(go.Scatter(
                            x=connection_x,
                            y=interval_upper,
                            mode='lines',
                            line=dict(width=0),
                            showlegend=False,
                            hoverinfo='skip'
                        ), row=1, col=1)
                        
                        fig.add_trace(go.Scatter(
                            x=connection_x,
                            y=interval_lower,
                            mode='lines',
                            line=dict(width=0),
                            fill='tonexty',
                            fillcolor=color,
                            name=f'{conf_level}% Prediction Interval',
                            hovertemplate=f'<b>{conf_level}% Interval</b><br>Time: %{{x}}<br>Upper: %{{y:.2f}}<extra></extra>'
                        ), row=1, col=1)
        
        # Forecast line
        fig.add_trace(go.Scatter(
            x=connection_x,
            y=connection_forecast,
            mode='lines',
            name='Point Forecast',
            line=dict(color=self.colors['forecast'], width=3, dash='dash'),
            hovertemplate='<b>Forecast</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
        ), row=1, col=1)
        
        # Plot actual future if available
        if actual_future is not None:
            actual_future = np.array(actual_future)
            actual_connection = [historical_data[-1]] + list(actual_future)
            fig.add_trace(go.Scatter(
                x=connection_x,
                y=actual_connection,
                mode='lines+markers',
                name='Actual Future',
                line=dict(color=self.colors['actual'], width=3),
                marker=dict(size=8, color=self.colors['actual'], 
                           line=dict(width=2, color='white')),
                hovertemplate='<b>Actual Future</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
            ), row=1, col=1)
        
        # Forecast start line (commented out due to datetime compatibility issues)
        # forecast_start = historical_x[-1] if dates_historical is not None else len(historical_data) - 1
        # fig.add_vline(
        #     x=forecast_start,
        #     line_dash="dot",
        #     line_color="gray",
        #     line_width=2,
        #     annotation_text="Forecast Start",
        #     annotation_position="top"
        # )
        
        # Create covariate subplots
        covariate_colors = ['#9467bd', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#d62728']
        
        plot_idx = 0
        for cov_name, cov_data in covariates_data.items():
            if not isinstance(cov_data, dict) or 'historical' not in cov_data:
                continue
                
            if plot_idx >= (rows - 1) * cols:  # Don't exceed subplot capacity
                break
                
            # Calculate subplot position
            row = 2 + plot_idx // cols
            col = 1 + plot_idx % cols
            color = covariate_colors[plot_idx % len(covariate_colors)]
            
            # Plot historical covariate data
            fig.add_trace(go.Scatter(
                x=historical_x,
                y=cov_data['historical'],
                mode='lines',
                name=f'{cov_name.replace("_", " ").title()} Historical',
                line=dict(color=color, width=2.5),
                hovertemplate=f'<b>{cov_name.replace("_", " ").title()}</b><br>Time: %{{x}}<br>Value: %{{y:.2f}}<extra></extra>',
                showlegend=False
            ), row=row, col=col)
            
            # Plot future covariate data if available
            if 'future' in cov_data and future_x is not None:
                combined_data = list(cov_data['historical']) + list(cov_data['future'])
                if dates_historical is None:
                    combined_x = np.arange(len(combined_data))
                else:
                    combined_x = list(historical_x) + list(future_x)
                
                future_start_idx = len(cov_data['historical']) - 1
                fig.add_trace(go.Scatter(
                    x=combined_x[future_start_idx:],
                    y=combined_data[future_start_idx:],
                    mode='lines+markers',
                    name=f'{cov_name.replace("_", " ").title()} Future',
                    line=dict(color=color, width=2.5, dash='dash'),
                    marker=dict(size=6, color=color),
                    hovertemplate=f'<b>{cov_name.replace("_", " ").title()} Future</b><br>Time: %{{x}}<br>Value: %{{y:.2f}}<extra></extra>',
                    showlegend=False
                ), row=row, col=col)
            
            # Forecast start line for covariate (commented out due to datetime compatibility issues)
            # fig.add_vline(
            #     x=forecast_start,
            #     line_dash="dot",
            #     line_color="gray",
            #     line_width=1,
            #     row=row, col=col
            # )
            
            plot_idx += 1
        
        # Update layout
        fig.update_layout(
            title=f'TimesFM Comprehensive Forecasting Analysis',
            title_x=0.5,
            title_font_size=20,
            height=800,
            showlegend=True,
            hovermode='x unified'
        )
        
        # Update axes
        for i in range(1, rows + 1):
            for j in range(1, cols + 1):
                fig.update_xaxes(
                    title_text="Time" if i == 1 else "",
                    gridcolor=self.colors['grid'],
                    showgrid=True,
                    row=i, col=j
                )
                fig.update_yaxes(
                    title_text=target_name if i == 1 else "Value",
                    gridcolor=self.colors['grid'],
                    showgrid=True,
                    row=i, col=j
                )
        
        # Add timestamp
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M")
        fig.add_annotation(
            x=1, y=-0.1,
            xref='paper', yref='paper',
            text=f'Generated: {timestamp}',
            showarrow=False,
            font=dict(size=10, color='gray')
        )
        
        # Save if requested
        if save_path:
            if save_path.endswith('.html'):
                fig.write_html(save_path)
            else:
                fig.write_image(save_path)
            logger.info(f"Comprehensive interactive plot saved to: {save_path}")
        
        # Show figure if requested
        if show_figure:
            fig.show()
        
        logger.info("βœ… Comprehensive interactive forecast visualization completed")
        return fig
    
    def plot_forecast_comparison(
        self,
        forecasts_dict: Dict[str, np.ndarray],
        historical_data: Union[List[float], np.ndarray],
        actual_future: Optional[Union[List[float], np.ndarray]] = None,
        title: str = "Forecast Methods Comparison",
        save_path: Optional[str] = None,
        show_figure: bool = True
    ) -> go.Figure:
        """
        Compare multiple forecasting methods in an interactive plot.
        
        Args:
            forecasts_dict: Dictionary of {method_name: forecast_array}
            historical_data: Historical data for context
            actual_future: Optional actual future values
            title: Plot title
            save_path: Optional save path
            show_figure: Whether to display the figure
            
        Returns:
            Plotly Figure object
        """
        logger.info(f"Creating interactive forecast comparison plot: {title}")
        
        fig = go.Figure()
        
        historical_data = np.array(historical_data)
        historical_x = np.arange(len(historical_data))
        
        # Plot historical data
        fig.add_trace(go.Scatter(
            x=historical_x,
            y=historical_data,
            mode='lines',
            name='Historical Data',
            line=dict(color=self.colors['historical'], width=3),
            hovertemplate='<b>Historical</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
        ))
        
        # Plot different forecasts
        forecast_colors = ['#d62728', '#ff7f0e', '#2ca02c', '#9467bd', '#8c564b']
        
        for i, (method, forecast) in enumerate(forecasts_dict.items()):
            forecast = np.array(forecast)
            future_x = np.arange(len(historical_data), len(historical_data) + len(forecast))
            
            # Seamless connection
            connection_x = [len(historical_data) - 1] + list(future_x)
            connection_forecast = [historical_data[-1]] + list(forecast)
            
            color = forecast_colors[i % len(forecast_colors)]
            linestyle = 'dash' if i == 0 else 'dot'
            
            fig.add_trace(go.Scatter(
                x=connection_x,
                y=connection_forecast,
                mode='lines',
                name=f'{method} Forecast',
                line=dict(color=color, width=3, dash=linestyle),
                hovertemplate=f'<b>{method} Forecast</b><br>Time: %{{x}}<br>Value: %{{y:.2f}}<extra></extra>'
            ))
        
        # Plot actual future if available
        if actual_future is not None:
            actual_future = np.array(actual_future)
            future_x = np.arange(len(historical_data), len(historical_data) + len(actual_future))
            connection_x = [len(historical_data) - 1] + list(future_x)
            actual_connection = [historical_data[-1]] + list(actual_future)
            
            fig.add_trace(go.Scatter(
                x=connection_x,
                y=actual_connection,
                mode='lines+markers',
                name='Actual Future',
                line=dict(color=self.colors['actual'], width=3),
                marker=dict(size=8, color=self.colors['actual'], 
                           line=dict(width=2, color='white')),
                hovertemplate='<b>Actual Future</b><br>Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
            ))
        
        # Forecast start line
        fig.add_vline(
            x=len(historical_data) - 1,
            line_dash="dot",
            line_color="gray",
            line_width=2,
            annotation_text="Forecast Start",
            annotation_position="top"
        )
        
        # Apply layout
        layout = self._create_base_layout(title, "Time", "Value")
        fig.update_layout(**layout)
        
        # Add timestamp
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M")
        fig.add_annotation(
            x=1, y=-0.1,
            xref='paper', yref='paper',
            text=f'Generated: {timestamp}',
            showarrow=False,
            font=dict(size=10, color='gray')
        )
        
        # Save if requested
        if save_path:
            if save_path.endswith('.html'):
                fig.write_html(save_path)
            else:
                fig.write_image(save_path)
            logger.info(f"Comparison plot saved to: {save_path}")
        
        # Show figure if requested
        if show_figure:
            fig.show()
        
        logger.info("βœ… Interactive forecast comparison visualization completed")
        return fig
    
    def create_dashboard(
        self,
        historical_data: Union[List[float], np.ndarray],
        forecast: Union[List[float], np.ndarray],
        intervals: Optional[Dict[str, np.ndarray]] = None,
        covariates_data: Optional[Dict[str, Dict[str, Union[List[float], float, str]]]] = None,
        actual_future: Optional[Union[List[float], np.ndarray]] = None,
        dates_historical: Optional[List[Union[str, datetime]]] = None,
        dates_future: Optional[List[Union[str, datetime]]] = None,
        title: str = "TimesFM Forecasting Dashboard",
        target_name: str = "Value",
        save_path: Optional[str] = None,
        show_figure: bool = True,
        context_len: Optional[int] = None,
        horizon_len: Optional[int] = None,
        show_full_history: bool = True,
        y_axis_padding: float = 0.1
    ) -> go.Figure:
        """
        Create a comprehensive dashboard with multiple visualization panels.
        
        Args:
            historical_data: Historical time series data
            forecast: Point forecast values
            intervals: Optional prediction intervals
            covariates_data: Optional covariates data
            actual_future: Optional actual future values
            dates_historical: Optional historical dates
            dates_future: Optional future dates
            title: Dashboard title
            target_name: Name of target variable
            save_path: Optional save path
            show_figure: Whether to display the figure
            
        Returns:
            Plotly Figure object
        """
        logger.info(f"Creating interactive forecasting dashboard: {title}")
        
        # If covariates are provided, use the comprehensive view
        if covariates_data and len(covariates_data) > 0:
            return self.plot_forecast_with_covariates(
                historical_data, forecast, covariates_data, intervals,
                actual_future, dates_historical, dates_future,
                title, target_name, save_path, show_figure,
                context_len, horizon_len, show_full_history, y_axis_padding
            )
        else:
            # Otherwise, use the standard forecast view
            return self.plot_forecast_with_intervals(
                historical_data, forecast, intervals, actual_future,
                dates_historical, dates_future, title, target_name, save_path, show_figure,
                context_len, horizon_len, show_full_history, y_axis_padding
            )
    
    def export_to_json(self, fig: go.Figure, file_path: str) -> None:
        """
        Export a Plotly figure to JSON format for web integration.
        
        Args:
            fig: Plotly Figure object
            file_path: Path to save the JSON file
        """
        fig.write_json(file_path)
        logger.info(f"Figure exported to JSON: {file_path}")
    
    def get_figure_html(self, fig: go.Figure, include_plotlyjs: bool = True) -> str:
        """
        Get the HTML representation of a figure.
        
        Args:
            fig: Plotly Figure object
            include_plotlyjs: Whether to include Plotly.js in the HTML
            
        Returns:
            HTML string representation of the figure
        """
        return fig.to_html(include_plotlyjs=include_plotlyjs)