Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Car_Price_Model.ipynb +0 -0
- CarsData.csv +0 -0
- app.py +91 -0
- model.pkl +3 -0
- requirements.txt +4 -0
Car_Price_Model.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
CarsData.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pickle
|
| 5 |
+
from sklearn.compose import ColumnTransformer
|
| 6 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
| 7 |
+
from sklearn.pipeline import Pipeline
|
| 8 |
+
from sklearn.linear_model import LinearRegression
|
| 9 |
+
|
| 10 |
+
# Load pre-trained model
|
| 11 |
+
with open("model.pkl", "rb") as file:
|
| 12 |
+
pipeline = pickle.load(file)
|
| 13 |
+
|
| 14 |
+
# Define the feature columns
|
| 15 |
+
feature_columns = [
|
| 16 |
+
"year",
|
| 17 |
+
"mileage",
|
| 18 |
+
"tax",
|
| 19 |
+
"mpg",
|
| 20 |
+
"engineSize",
|
| 21 |
+
"transmission",
|
| 22 |
+
"fuelType",
|
| 23 |
+
"Manufacturer",
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def predict_price(
|
| 28 |
+
year, mileage, tax, mpg, engineSize, transmission, fuelType, Manufacturer
|
| 29 |
+
):
|
| 30 |
+
input_df = pd.DataFrame(
|
| 31 |
+
[[year, mileage, tax, mpg, engineSize, transmission, fuelType, Manufacturer]],
|
| 32 |
+
columns=feature_columns,
|
| 33 |
+
)
|
| 34 |
+
prediction = pipeline.predict(input_df)
|
| 35 |
+
return prediction[0][0]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Streamlit app layout
|
| 39 |
+
st.write("Enter the details of the car to predict its price:")
|
| 40 |
+
|
| 41 |
+
# Input fields
|
| 42 |
+
year = st.number_input("Year", min_value=1900, max_value=2100, value=2010)
|
| 43 |
+
mileage = st.number_input("Mileage", min_value=0, value=50000)
|
| 44 |
+
tax = st.number_input("Tax (£)", min_value=0, value=100)
|
| 45 |
+
mpg = st.number_input("MPG", min_value=0, value=50)
|
| 46 |
+
engineSize = st.number_input("Engine Size (L)", min_value=0.0, value=2.0)
|
| 47 |
+
transmission = st.selectbox(
|
| 48 |
+
"Transmission", options=["Automatic", "Semi-Auto", "Manual"]
|
| 49 |
+
)
|
| 50 |
+
fuelType = st.selectbox("Fuel Type", options=["Petrol", "Diesel", "Electric", "Hybrid"])
|
| 51 |
+
Manufacturer = st.selectbox(
|
| 52 |
+
"Manufacturer",
|
| 53 |
+
options=[
|
| 54 |
+
"toyota",
|
| 55 |
+
"hyundi",
|
| 56 |
+
"ford",
|
| 57 |
+
"BMW",
|
| 58 |
+
"Audi",
|
| 59 |
+
"merc",
|
| 60 |
+
"volkswagen",
|
| 61 |
+
"vauxhall",
|
| 62 |
+
],
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Button to predict
|
| 66 |
+
if st.button("🔮 Predict Price"):
|
| 67 |
+
price = predict_price(
|
| 68 |
+
year, mileage, tax, mpg, engineSize, transmission, fuelType, Manufacturer
|
| 69 |
+
)
|
| 70 |
+
st.write(f"The predicted price of the car is £{price:.2f}")
|
| 71 |
+
|
| 72 |
+
# Developer Info
|
| 73 |
+
|
| 74 |
+
st.sidebar.title("🚗 Car Price Predictor")
|
| 75 |
+
st.sidebar.subheader("About the Developer")
|
| 76 |
+
st.sidebar.markdown(
|
| 77 |
+
"Developed by [Tajeddine Bourhim](https://tajeddine-portfolio.netlify.app/)."
|
| 78 |
+
)
|
| 79 |
+
st.sidebar.markdown(
|
| 80 |
+
"[](https://github.com/scorpionTaj)"
|
| 81 |
+
)
|
| 82 |
+
st.sidebar.markdown(
|
| 83 |
+
"[](https://www.linkedin.com/in/tajeddine-bourhim/)"
|
| 84 |
+
)
|
| 85 |
+
st.sidebar.subheader("📚 About This App")
|
| 86 |
+
st.sidebar.markdown(
|
| 87 |
+
"This app uses a machine learning model to predict the price of a car based on various features."
|
| 88 |
+
)
|
| 89 |
+
st.sidebar.markdown(
|
| 90 |
+
"Model trained using historical car price data and includes features like year, mileage, and more."
|
| 91 |
+
)
|
model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84816f05306c9974b8e19d920b5d529af65b63bbc522e18f952fa5f4fc2d2fd5
|
| 3 |
+
size 2883
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.37.1
|
| 2 |
+
pandas==2.2.2
|
| 3 |
+
numpy==2.0.1
|
| 4 |
+
scikit-learn==1.5.1
|