Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from threading import Thread
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import re
|
| 6 |
+
from openai_harmony import (
|
| 7 |
+
load_harmony_encoding,
|
| 8 |
+
HarmonyEncodingName,
|
| 9 |
+
Role,
|
| 10 |
+
Message,
|
| 11 |
+
Conversation,
|
| 12 |
+
SystemContent,
|
| 13 |
+
DeveloperContent,
|
| 14 |
+
ReasoningEffort,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
RE_REASONING = re.compile(r'(?i)Reasoning:\s*(low|medium|high)')
|
| 18 |
+
RE_FINAL_MARKER = re.compile(r'(?i)assistantfinal')
|
| 19 |
+
RE_ANALYSIS_PREFIX = re.compile(r'(?i)^analysis\s*')
|
| 20 |
+
|
| 21 |
+
def parse_reasoning_and_instructions(system_prompt: str):
|
| 22 |
+
instructions = system_prompt or "You are a helpful assistant."
|
| 23 |
+
match = RE_REASONING.search(instructions)
|
| 24 |
+
effort_key = match.group(1).lower() if match else 'medium'
|
| 25 |
+
effort = {
|
| 26 |
+
'low': ReasoningEffort.LOW,
|
| 27 |
+
'medium': ReasoningEffort.MEDIUM,
|
| 28 |
+
'high': ReasoningEffort.HIGH,
|
| 29 |
+
}.get(effort_key, ReasoningEffort.MEDIUM)
|
| 30 |
+
cleaned_instructions = RE_REASONING.sub('', instructions).strip()
|
| 31 |
+
return effort, cleaned_instructions
|
| 32 |
+
|
| 33 |
+
model_id = "ArliAI/gpt-oss-20b-Derestricted"
|
| 34 |
+
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_id,
|
| 38 |
+
torch_dtype="auto",
|
| 39 |
+
trust_remote_code=True,
|
| 40 |
+
device_map=None,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
enc = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
|
| 44 |
+
|
| 45 |
+
def format_conversation_history(chat_history):
|
| 46 |
+
"""Handle legacy/new format"""
|
| 47 |
+
messages = []
|
| 48 |
+
for item in chat_history:
|
| 49 |
+
if isinstance(item, dict):
|
| 50 |
+
role = item.get("role", "user")
|
| 51 |
+
content = item.get("content", "")
|
| 52 |
+
if isinstance(content, list):
|
| 53 |
+
content = content[0].get("text", str(content)) if content else ""
|
| 54 |
+
messages.append({"role": role, "content": content})
|
| 55 |
+
elif isinstance(item, (list, tuple)):
|
| 56 |
+
if item[0]:
|
| 57 |
+
messages.append({"role": "user", "content": item[0]})
|
| 58 |
+
if len(item) > 1 and item[1]:
|
| 59 |
+
messages.append({"role": "assistant", "content": item[1]})
|
| 60 |
+
return messages
|
| 61 |
+
|
| 62 |
+
@spaces.GPU(duration=120)
|
| 63 |
+
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
|
| 64 |
+
model.to('cuda')
|
| 65 |
+
|
| 66 |
+
new_message = {"role": "user", "content": input_data}
|
| 67 |
+
processed_history = format_conversation_history(chat_history)
|
| 68 |
+
effort, instructions = parse_reasoning_and_instructions(system_prompt)
|
| 69 |
+
system_content = SystemContent.new().with_reasoning_effort(effort)
|
| 70 |
+
developer_content = DeveloperContent.new().with_instructions(instructions)
|
| 71 |
+
harmony_messages = [
|
| 72 |
+
Message.from_role_and_content(Role.SYSTEM, system_content),
|
| 73 |
+
Message.from_role_and_content(Role.DEVELOPER, developer_content),
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
for m in processed_history + [new_message]:
|
| 77 |
+
role = Role.USER if m["role"] == "user" else Role.ASSISTANT
|
| 78 |
+
harmony_messages.append(Message.from_role_and_content(role, m["content"]))
|
| 79 |
+
conversation = Conversation.from_messages(harmony_messages)
|
| 80 |
+
prompt_tokens = enc.render_conversation_for_completion(conversation, Role.ASSISTANT)
|
| 81 |
+
prompt_text = tokenizer.decode(prompt_tokens, skip_special_tokens=False)
|
| 82 |
+
|
| 83 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 84 |
+
|
| 85 |
+
inputs = tokenizer(prompt_text, return_tensors="pt").to('cuda')
|
| 86 |
+
|
| 87 |
+
generation_kwargs = {
|
| 88 |
+
"input_ids": inputs["input_ids"],
|
| 89 |
+
"attention_mask": inputs["attention_mask"],
|
| 90 |
+
"max_new_tokens": max_new_tokens,
|
| 91 |
+
"do_sample": True,
|
| 92 |
+
"temperature": temperature,
|
| 93 |
+
"top_p": top_p,
|
| 94 |
+
"top_k": top_k,
|
| 95 |
+
"repetition_penalty": repetition_penalty,
|
| 96 |
+
"streamer": streamer,
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 100 |
+
thread.start()
|
| 101 |
+
|
| 102 |
+
thinking = ""
|
| 103 |
+
final = ""
|
| 104 |
+
started_final = False
|
| 105 |
+
for chunk in streamer:
|
| 106 |
+
if not started_final:
|
| 107 |
+
parts = RE_FINAL_MARKER.split(chunk, maxsplit=1)
|
| 108 |
+
thinking += parts[0]
|
| 109 |
+
if len(parts) > 1:
|
| 110 |
+
final += parts[-1]
|
| 111 |
+
started_final = True
|
| 112 |
+
else:
|
| 113 |
+
final += chunk
|
| 114 |
+
clean_thinking = RE_ANALYSIS_PREFIX.sub('', thinking).strip()
|
| 115 |
+
clean_final = final.strip()
|
| 116 |
+
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
|
| 117 |
+
yield formatted
|
| 118 |
+
|
| 119 |
+
thread.join()
|
| 120 |
+
|
| 121 |
+
demo = gr.ChatInterface(
|
| 122 |
+
fn=generate_response,
|
| 123 |
+
additional_inputs=[
|
| 124 |
+
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
|
| 125 |
+
gr.Textbox(
|
| 126 |
+
label="System Prompt",
|
| 127 |
+
value="You are a helpful assistant. Reasoning: medium",
|
| 128 |
+
lines=4,
|
| 129 |
+
placeholder="Change system prompt"
|
| 130 |
+
),
|
| 131 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
|
| 132 |
+
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 133 |
+
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
|
| 134 |
+
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
|
| 135 |
+
],
|
| 136 |
+
examples=[
|
| 137 |
+
["Explain Newton's laws clearly and concisely"],
|
| 138 |
+
["What are the benefits of open weight AI models"],
|
| 139 |
+
["Write a Python function to calculate the Fibonacci sequence"],
|
| 140 |
+
],
|
| 141 |
+
cache_examples=False,
|
| 142 |
+
description="""# GPT-OSS 20B Derestricted.""",
|
| 143 |
+
fill_height=True,
|
| 144 |
+
stop_btn="Stop Generation",
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
demo.launch()
|