import spaces from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer from threading import Thread import gradio as gr import re from openai_harmony import ( load_harmony_encoding, HarmonyEncodingName, Role, Message, Conversation, SystemContent, DeveloperContent, ReasoningEffort, ) RE_REASONING = re.compile(r'(?i)Reasoning:\s*(low|medium|high)') RE_FINAL_MARKER = re.compile(r'(?i)assistantfinal') RE_ANALYSIS_PREFIX = re.compile(r'(?i)^analysis\s*') def parse_reasoning_and_instructions(system_prompt: str): instructions = system_prompt or "You are a helpful assistant." match = RE_REASONING.search(instructions) effort_key = match.group(1).lower() if match else 'medium' effort = { 'low': ReasoningEffort.LOW, 'medium': ReasoningEffort.MEDIUM, 'high': ReasoningEffort.HIGH, }.get(effort_key, ReasoningEffort.MEDIUM) cleaned_instructions = RE_REASONING.sub('', instructions).strip() return effort, cleaned_instructions model_id = "ArliAI/gpt-oss-20b-Derestricted" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", trust_remote_code=True, device_map=None, ) enc = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS) def format_conversation_history(chat_history): """Handle legacy/new format""" messages = [] for item in chat_history: if isinstance(item, dict): role = item.get("role", "user") content = item.get("content", "") if isinstance(content, list): content = content[0].get("text", str(content)) if content else "" messages.append({"role": role, "content": content}) elif isinstance(item, (list, tuple)): if item[0]: messages.append({"role": "user", "content": item[0]}) if len(item) > 1 and item[1]: messages.append({"role": "assistant", "content": item[1]}) return messages @spaces.GPU(duration=120) def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): model.to('cuda') new_message = {"role": "user", "content": input_data} processed_history = format_conversation_history(chat_history) effort, instructions = parse_reasoning_and_instructions(system_prompt) system_content = SystemContent.new().with_reasoning_effort(effort) developer_content = DeveloperContent.new().with_instructions(instructions) harmony_messages = [ Message.from_role_and_content(Role.SYSTEM, system_content), Message.from_role_and_content(Role.DEVELOPER, developer_content), ] for m in processed_history + [new_message]: role = Role.USER if m["role"] == "user" else Role.ASSISTANT harmony_messages.append(Message.from_role_and_content(role, m["content"])) conversation = Conversation.from_messages(harmony_messages) prompt_tokens = enc.render_conversation_for_completion(conversation, Role.ASSISTANT) prompt_text = tokenizer.decode(prompt_tokens, skip_special_tokens=False) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) inputs = tokenizer(prompt_text, return_tensors="pt").to('cuda') generation_kwargs = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "streamer": streamer, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() thinking = "" final = "" started_final = False for chunk in streamer: if not started_final: parts = RE_FINAL_MARKER.split(chunk, maxsplit=1) thinking += parts[0] if len(parts) > 1: final += parts[-1] started_final = True else: final += chunk clean_thinking = RE_ANALYSIS_PREFIX.sub('', thinking).strip() clean_final = final.strip() formatted = f"
Click to view Thinking Process\n\n{clean_thinking}\n\n
\n\n{clean_final}" yield formatted thread.join() demo = gr.ChatInterface( fn=generate_response, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), gr.Textbox( label="System Prompt", value="You are a helpful assistant. Reasoning: medium", lines=4, placeholder="Change system prompt" ), gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) ], examples=[ ["Explain Newton's laws clearly and concisely"], ["What are the benefits of open weight AI models"], ["Write a Python function to calculate the Fibonacci sequence"], ], cache_examples=False, description="""# GPT-OSS 20B Derestricted.""", fill_height=True, stop_btn="Stop Generation", ) if __name__ == "__main__": demo.launch()