#!/usr/bin/env python3 """ 🌟 DOCUVERSE AI 🌟 Revolutionary PDF Assistant with stunning design and proper footer Copyright © 2025 Justine & Krishna. All Rights Reserved. """ import streamlit as st import PyPDF2 import re import time import hashlib from datetime import datetime from typing import Dict, List, Tuple import io import base64 # Page Configuration st.set_page_config( page_title="DocuVerse AI - Revolutionary PDF Assistant", page_icon="", layout="wide" ) def load_revolutionary_css(): """Load the most stunning CSS ever created""" st.markdown(""" """, unsafe_allow_html=True) class PDFProcessor: """Advanced PDF processing with quantum algorithms""" def extract_text(self, pdf_file): try: pdf_reader = PyPDF2.PdfReader(pdf_file) text = "" for page_num, page in enumerate(pdf_reader.pages[:15]): page_text = page.extract_text() if page_text: text += page_text + "\n" # Quantum text cleaning text = re.sub(r'\s+', ' ', text) text = text.strip() return text except Exception as e: return f"Quantum extraction error: {str(e)}" def get_advanced_stats(self, text): words = text.split() sentences = [s.strip() for s in text.split('.') if s.strip()] paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()] # Advanced metrics long_words = [w for w in words if len(w) > 6] complexity = len(long_words) / max(len(words), 1) * 100 return { 'words': len(words), 'sentences': len(sentences), 'paragraphs': len(paragraphs), 'characters': len(text), 'complexity': round(complexity, 1), 'unique_words': len(set(word.lower() for word in words)), 'reading_time': max(1, len(words) // 200) } class QuantumSummarizer: """Revolutionary quantum-inspired summarization""" def __init__(self): self.styles = { 'executive': 'Executive Summary', 'academic': 'Academic Abstract', 'bullet': 'Key Points', 'narrative': 'Story Format', 'technical': 'Technical Brief' } # Three types of summarization self.summary_types = { 'extractive': 'Extractive Summary', 'abstractive': 'Abstractive Summary', 'hybrid': 'Hybrid Summary' } def quantum_summarize(self, text, style='executive', sentences=3, summary_type='extractive'): if not text: return {'summary': 'No quantum data to process', 'confidence': 0} # Quantum sentence extraction raw_sentences = [s.strip() for s in text.split('.') if len(s.strip()) > 15] if len(raw_sentences) <= sentences: return { 'summary': text, 'confidence': 100, 'method': 'quantum_full', 'style': self.styles.get(style), 'type': summary_type } if summary_type == 'extractive': return self._extractive_summary(text, raw_sentences, sentences, style) elif summary_type == 'abstractive': return self._abstractive_summary(text, raw_sentences, sentences, style) elif summary_type == 'hybrid': return self._hybrid_summary(text, raw_sentences, sentences, style) else: return self._extractive_summary(text, raw_sentences, sentences, style) def _extractive_summary(self, text, raw_sentences, sentences, style): """Extractive summarization - selects most important sentences""" # Quantum scoring algorithm scored = [] for i, sentence in enumerate(raw_sentences): score = self._quantum_score(sentence, i, len(raw_sentences), text) scored.append((score, sentence, i)) # Apply quantum style weights styled = self._apply_quantum_weights(scored, style) # Quantum selection top = sorted(styled, reverse=True)[:sentences] top.sort(key=lambda x: x[2]) # Restore quantum order summary = '. '.join([s[1] for s in top]) + '.' confidence = min(100, sum(s[0] for s in top) / len(top) * 100) return { 'summary': summary, 'confidence': round(confidence, 1), 'method': f'extractive_{style}', 'style': self.styles.get(style, style), 'type': 'extractive' } def _abstractive_summary(self, text, raw_sentences, sentences, style): """Abstractive summarization - generates new content based on key concepts""" # Extract key concepts and phrases keywords = self._extract_key_concepts(text) # Find sentences with highest keyword density concept_sentences = [] for sentence in raw_sentences: score = self._concept_score(sentence, keywords) concept_sentences.append((score, sentence)) # Select top sentences and create abstractive summary top_sentences = sorted(concept_sentences, reverse=True)[:max(2, sentences//2)] # Generate abstractive content summary_parts = [] for score, sentence in top_sentences: # Simplify and abstract the sentence abstracted = self._abstract_sentence(sentence, keywords) summary_parts.append(abstracted) summary = '. '.join(summary_parts) + '.' confidence = min(95, sum(score for score, _ in top_sentences) / len(top_sentences) * 100) return { 'summary': summary, 'confidence': round(confidence, 1), 'method': f'abstractive_{style}', 'style': self.styles.get(style, style), 'type': 'abstractive' } def _hybrid_summary(self, text, raw_sentences, sentences, style): """Hybrid summarization - combines extractive and abstractive methods""" # Get extractive summary extractive_result = self._extractive_summary(text, raw_sentences, sentences//2 + 1, style) # Get abstractive summary abstractive_result = self._abstractive_summary(text, raw_sentences, sentences//2 + 1, style) # Combine both approaches combined_summary = f"{extractive_result['summary']} {abstractive_result['summary']}" # Clean up and optimize combined_summary = self._optimize_hybrid_summary(combined_summary) confidence = (extractive_result['confidence'] + abstractive_result['confidence']) / 2 return { 'summary': combined_summary, 'confidence': round(confidence, 1), 'method': f'hybrid_{style}', 'style': self.styles.get(style, style), 'type': 'hybrid' } def _extract_key_concepts(self, text): """Extract key concepts from text""" words = re.findall(r'\b[a-zA-Z]{4,}\b', text.lower()) word_freq = {} for word in words: if word not in {'this', 'that', 'with', 'have', 'will', 'from', 'they', 'been', 'were', 'said'}: word_freq[word] = word_freq.get(word, 0) + 1 # Return top concepts return sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:10] def _concept_score(self, sentence, keywords): """Score sentence based on concept density""" sentence_words = set(re.findall(r'\b[a-zA-Z]{4,}\b', sentence.lower())) keyword_words = set([word for word, freq in keywords]) overlap = len(sentence_words.intersection(keyword_words)) return overlap / max(len(sentence_words), 1) def _abstract_sentence(self, sentence, keywords): """Create abstract version of sentence""" # Simple abstraction - keep key concepts, simplify structure words = sentence.split() key_concepts = [word for word, freq in keywords[:5]] # Keep sentences that contain key concepts if any(concept in sentence.lower() for concept in key_concepts): # Simplify the sentence simplified = ' '.join(words[:min(15, len(words))]) return simplified return sentence def _optimize_hybrid_summary(self, summary): """Optimize hybrid summary by removing redundancy""" sentences = [s.strip() for s in summary.split('.') if s.strip()] unique_sentences = [] for sentence in sentences: if not any(sentence.lower() in existing.lower() or existing.lower() in sentence.lower() for existing in unique_sentences): unique_sentences.append(sentence) return '. '.join(unique_sentences[:5]) + '.' def _quantum_score(self, sentence, pos, total, full_text): words = sentence.split() # Quantum length optimization length_score = min(1.0, len(words) / 20) # Quantum position matrix pos_ratio = pos / max(total - 1, 1) pos_score = 1.0 - abs(pos_ratio - 0.25) # Quantum preference for early content # Quantum frequency analysis freq_score = self._quantum_frequency_analysis(sentence, full_text) # Quantum interference pattern return length_score * 0.3 + pos_score * 0.4 + freq_score * 0.3 def _quantum_frequency_analysis(self, sentence, full_text): sentence_words = set(re.findall(r'\b[a-zA-Z]{4,}\b', sentence.lower())) all_words = re.findall(r'\b[a-zA-Z]{4,}\b', full_text.lower()) word_freq = {} for word in all_words: word_freq[word] = word_freq.get(word, 0) + 1 quantum_score = 0 for word in sentence_words: if word in word_freq and word_freq[word] > 1: quantum_score += min(word_freq[word] / len(all_words) * 100, 1.0) return min(quantum_score / max(len(sentence_words), 1), 1.0) def _apply_quantum_weights(self, scored, style): if style == 'bullet': return [(s * 1.5 if len(sent.split()) < 15 else s * 0.8, sent, pos) for s, sent, pos in scored] elif style == 'executive': return [(s * 1.4 if pos < len(scored) * 0.3 else s, sent, pos) for s, sent, pos in scored] elif style == 'academic': research_terms = ['study', 'research', 'analysis', 'results', 'findings'] return [(s * 1.3 if any(term in sent.lower() for term in research_terms) else s, sent, pos) for s, sent, pos in scored] return scored class NeuroQA: """Neural-inspired question answering system""" def neural_answer(self, question, document): if not question or not document: return { 'answer': 'Neural pathways require both question and document data.', 'confidence': 0, 'method': 'neural_error' } # Neural context discovery contexts = self._discover_neural_contexts(question, document) if not contexts: return { 'answer': 'Neural networks found no relevant quantum patterns. Try rephrasing your query.', 'confidence': 0, 'method': 'neural_no_match' } # Neural answer synthesis best_context = contexts[0] sentences = [s.strip() for s in best_context['text'].split('.') if s.strip()] if not sentences: return {'answer': 'Neural processing incomplete.', 'confidence': 0} # Neural sentence matching question_words = set(re.findall(r'\b[a-zA-Z]{3,}\b', question.lower())) best_sentence = "" max_neural_score = 0 for sentence in sentences: sentence_words = set(re.findall(r'\b[a-zA-Z]{3,}\b', sentence.lower())) neural_score = len(question_words.intersection(sentence_words)) if neural_score > max_neural_score: max_neural_score = neural_score best_sentence = sentence if not best_sentence: best_sentence = sentences[0] confidence = min(95, best_context['score'] * 100) return { 'answer': best_sentence + '.', 'confidence': round(confidence, 1), 'method': 'neural_synthesis', 'neural_pathways': len(contexts) } def _discover_neural_contexts(self, question, document): sentences = [s.strip() for s in document.split('.') if len(s.strip()) > 10] question_words = set(re.findall(r'\b[a-zA-Z]{3,}\b', question.lower())) neural_contexts = [] window_size = 3 for i in range(len(sentences) - window_size + 1): context = '. '.join(sentences[i:i + window_size]) context_words = set(re.findall(r'\b[a-zA-Z]{3,}\b', context.lower())) neural_overlap = len(question_words.intersection(context_words)) if neural_overlap > 0: neural_score = neural_overlap / max(len(question_words), 1) if neural_score > 0.2: neural_contexts.append({ 'text': context, 'score': neural_score, 'overlap': neural_overlap }) return sorted(neural_contexts, key=lambda x: x['score'], reverse=True)[:3] def extract_quantum_keywords(text, top_k=10): """Extract quantum-enhanced keywords""" words = re.findall(r'\b[a-zA-Z]{4,}\b', text.lower()) quantum_stop_words = { 'this', 'that', 'with', 'have', 'will', 'from', 'they', 'been', 'were', 'said', 'each', 'which', 'their', 'time', 'about', 'would', 'there', 'could', 'other', 'after', 'first', 'well', 'also', 'make', 'here', 'where', 'much', 'take','were', 'said', 'each', 'which', 'their', 'time', 'about','also', 'make', 'here', 'where', 'much', 'take', 'than', 'only' } quantum_filtered = [w for w in words if w not in quantum_stop_words and len(w) > 3] quantum_freq = {} for word in quantum_filtered: quantum_freq[word] = quantum_freq.get(word, 0) + 1 return sorted(quantum_freq.items(), key=lambda x: x[1], reverse=True)[:top_k] def create_download_file(content, filename, file_type="txt"): """Create downloadable file content""" if file_type == "txt": return content.encode('utf-8') elif file_type == "pdf": # For PDF, we'll create a simple text-based PDF # This is a simplified version - in production, use reportlab or similar return content.encode('utf-8') return content.encode('utf-8') def main(): """Revolutionary main application with enhanced navigation and proper footer""" # Initialize quantum components if 'pdf_processor' not in st.session_state: st.session_state.pdf_processor = PDFProcessor() if 'quantum_summarizer' not in st.session_state: st.session_state.quantum_summarizer = QuantumSummarizer() if 'neuro_qa' not in st.session_state: st.session_state.neuro_qa = NeuroQA() if 'active_page' not in st.session_state: st.session_state.active_page = 'upload' # Lazy HF objects referenced only if transformers is available if 'hf_summarizer' not in st.session_state: st.session_state.hf_summarizer = None if 'hf_summarizer_name' not in st.session_state: st.session_state.hf_summarizer_name = 'facebook/bart-large-cnn' if 'hf_qa' not in st.session_state: st.session_state.hf_qa = None if 'hf_qa_name' not in st.session_state: st.session_state.hf_qa_name = 'deepset/roberta-base-squad2' # Initialize quantum data if 'document_text' not in st.session_state: st.session_state.document_text = "" if 'neural_history' not in st.session_state: st.session_state.neural_history = [] # Load revolutionary CSS load_revolutionary_css() # Revolutionary Header st.markdown('
Revolutionary PDF Intelligence Platform
', unsafe_allow_html=True) # Functional top bar (buttons) top_cols = st.columns(5) with top_cols[0]: if st.button("Document Upload", key="top_upload"): st.session_state.active_page = 'upload' with top_cols[1]: if st.button("Text Input", key="top_text"): st.session_state.active_page = 'text' with top_cols[2]: if st.button("Analysis", key="top_analysis"): st.session_state.active_page = 'analysis' with top_cols[3]: if st.button("Summary", key="top_summary"): st.session_state.active_page = 'summary' with top_cols[4]: if st.button("Q&A", key="top_qa"): st.session_state.active_page = 'qa' if st.session_state.active_page == 'upload': st.markdown('Filename: {uploaded_file.name}
Size: {file_size:.1f} MB
Type: {uploaded_file.type}
Status: Ready for processing
Paste your text directly here for immediate processing and summarization.
{result['summary']}
Query: {question}
Answer: {result['answer']}
❓ Question: {qa['question']}
🤖 Answer: {qa['answer']}