File size: 28,292 Bytes
eb09c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "video-action-recognition-header"
},
"source": [
"# π¬ Video Action Recognition with TimeSformer\n",
"\n",
"[](https://colab.research.google.com/github/u-justine/VideoActionRecognition/blob/main/VideoActionRecognition_Colab.ipynb)\n",
"[](https://github.com/u-justine/VideoActionRecognition)\n",
"\n",
"This notebook provides a complete implementation of video action recognition using Facebook's TimeSformer model. Upload your own videos and get real-time predictions of human actions!\n",
"\n",
"## Features\n",
"- π§ **AI-Powered**: Uses Facebook's TimeSformer model fine-tuned on Kinetics-400\n",
"- β‘ **GPU Accelerated**: Runs efficiently on Colab's free GPU\n",
"- π **Easy Upload**: Drag and drop videos directly in the browser\n",
"- π **Detailed Results**: Get top-k predictions with confidence scores\n",
"- π― **400+ Actions**: Recognizes sports, daily activities, and more\n",
"\n",
"## How to Use\n",
"1. **Enable GPU**: Go to `Runtime` β `Change runtime type` β Select `GPU`\n",
"2. **Run Setup**: Execute the setup cells below\n",
"3. **Upload Video**: Use the file upload widget\n",
"4. **Get Predictions**: View action recognition results\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "setup-section"
},
"source": [
"## π¦ Installation and Setup\n",
"\n",
"First, let's install all required dependencies and check GPU availability."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "install-dependencies"
},
"outputs": [],
"source": [
"# Check GPU availability\n",
"import torch\n",
"print(f\"π PyTorch version: {torch.__version__}\")\n",
"print(f\"π₯ CUDA available: {torch.cuda.is_available()}\")\n",
"if torch.cuda.is_available():\n",
" print(f\"π― GPU device: {torch.cuda.get_device_name(0)}\")\n",
" print(f\"πΎ GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB\")\n",
"else:\n",
" print(\"β οΈ GPU not available, using CPU (will be slower)\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "install-packages"
},
"outputs": [],
"source": [
"# Install required packages\n",
"!pip install -q transformers[torch]\n",
"!pip install -q decord\n",
"!pip install -q opencv-python\n",
"!pip install -q pillow\n",
"!pip install -q numpy\n",
"!pip install -q ipywidgets\n",
"\n",
"print \"β
All packages installed successfully!\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "import-libraries"
},
"outputs": [],
"source": [
"# Import required libraries\n",
"import os\n",
"import json\n",
"import warnings\n",
"from pathlib import Path\n",
"from typing import List, Tuple, Optional\n",
"import time\n",
"\n",
"import numpy as np\n",
"import torch\n",
"from transformers import TimesformerImageProcessor, TimesformerForVideoClassification\n",
"from PIL import Image\n",
"import cv2\n",
"from IPython.display import display, HTML, Video\n",
"from google.colab import files\n",
"import ipywidgets as widgets\n",
"from IPython.display import clear_output\n",
"\n",
"# Suppress warnings\n",
"warnings.filterwarnings('ignore')\n",
"torch.set_grad_enabled(False)\n",
"\n",
"print(\"π Libraries imported successfully!\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "model-setup"
},
"source": [
"## π€ Model Setup\n",
"\n",
"Loading the TimeSformer model and processor. This may take a few minutes on first run."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "load-model"
},
"outputs": [],
"source": [
"# Model configuration\n",
"MODEL_NAME = \"facebook/timesformer-base-finetuned-k400\"\n",
"FRAMES_PER_VIDEO = 32 # TimeSformer expects 32 frames\n",
"TARGET_FPS = 8 # Sample frames at this rate\n",
"\n",
"print(f\"π Loading TimeSformer model: {MODEL_NAME}\")\n",
"print(\"β³ This may take a few minutes on first run...\")\n",
"\n",
"# Load model and processor\n",
"try:\n",
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
" \n",
" # Load processor\n",
" processor = TimesformerImageProcessor.from_pretrained(MODEL_NAME)\n",
" print(\"β
Processor loaded\")\n",
" \n",
" # Load model\n",
" model = TimesformerForVideoClassification.from_pretrained(MODEL_NAME)\n",
" model = model.to(device)\n",
" model.eval()\n",
" print(f\"β
Model loaded on {device}\")\n",
" \n",
" # Get label mapping\n",
" id2label = model.config.id2label\n",
" print(f\"π Model can recognize {len(id2label)} different actions\")\n",
" \n",
"except Exception as e:\n",
" print(f\"β Error loading model: {e}\")\n",
" raise e\n",
"\n",
"print(\"π Model setup complete!\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "helper-functions"
},
"source": [
"## π οΈ Helper Functions\n",
"\n",
"Define functions for video processing and prediction."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "video-processing-functions"
},
"outputs": [],
"source": [
"def extract_frames_cv2(video_path: str, target_frames: int = FRAMES_PER_VIDEO) -> np.ndarray:\n",
" \"\"\"\n",
" Extract uniformly sampled frames from video using OpenCV.\n",
" \n",
" Args:\n",
" video_path: Path to the video file\n",
" target_frames: Number of frames to extract\n",
" \n",
" Returns:\n",
" numpy array of shape (target_frames, height, width, 3)\n",
" \"\"\"\n",
" cap = cv2.VideoCapture(video_path)\n",
" \n",
" if not cap.isOpened():\n",
" raise ValueError(f\"Cannot open video: {video_path}\")\n",
" \n",
" # Get video properties\n",
" total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
" fps = cap.get(cv2.CAP_PROP_FPS)\n",
" duration = total_frames / fps\n",
" \n",
" print(f\"πΉ Video info: {total_frames} frames, {fps:.1f} FPS, {duration:.1f}s duration\")\n",
" \n",
" # Calculate frame indices to sample\n",
" if total_frames <= target_frames:\n",
" frame_indices = list(range(total_frames))\n",
" # Pad with last frame if needed\n",
" frame_indices.extend([total_frames - 1] * (target_frames - total_frames))\n",
" else:\n",
" frame_indices = np.linspace(0, total_frames - 1, target_frames, dtype=int)\n",
" \n",
" frames = []\n",
" for i, frame_idx in enumerate(frame_indices):\n",
" cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)\n",
" ret, frame = cap.read()\n",
" \n",
" if ret:\n",
" # Convert BGR to RGB\n",
" frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
" frames.append(frame)\n",
" else:\n",
" # Use last valid frame if read fails\n",
" if frames:\n",
" frames.append(frames[-1])\n",
" else:\n",
" raise ValueError(f\"Cannot read frame {frame_idx}\")\n",
" \n",
" cap.release()\n",
" \n",
" frames_array = np.array(frames)\n",
" print(f\"π¬ Extracted {len(frames)} frames, shape: {frames_array.shape}\")\n",
" \n",
" return frames_array\n",
"\n",
"def predict_actions(video_path: str, top_k: int = 5) -> List[Tuple[str, float]]:\n",
" \"\"\"\n",
" Predict actions in a video.\n",
" \n",
" Args:\n",
" video_path: Path to the video file\n",
" top_k: Number of top predictions to return\n",
" \n",
" Returns:\n",
" List of (action_name, confidence) tuples\n",
" \"\"\"\n",
" try:\n",
" print(f\"π― Analyzing video: {Path(video_path).name}\")\n",
" \n",
" # Extract frames\n",
" start_time = time.time()\n",
" frames = extract_frames_cv2(video_path)\n",
" extract_time = time.time() - start_time\n",
" print(f\"β±οΈ Frame extraction: {extract_time:.2f}s\")\n",
" \n",
" # Process frames\n",
" start_time = time.time()\n",
" inputs = processor(list(frames), return_tensors=\"pt\")\n",
" \n",
" # Move to device\n",
" pixel_values = inputs['pixel_values'].to(device)\n",
" process_time = time.time() - start_time\n",
" print(f\"β±οΈ Frame processing: {process_time:.2f}s\")\n",
" print(f\"π Input tensor shape: {pixel_values.shape}\")\n",
" \n",
" # Predict\n",
" start_time = time.time()\n",
" with torch.no_grad():\n",
" outputs = model(pixel_values)\n",
" logits = outputs.logits\n",
" \n",
" # Get probabilities\n",
" probabilities = torch.nn.functional.softmax(logits, dim=-1)\n",
" predict_time = time.time() - start_time\n",
" print(f\"β±οΈ Model inference: {predict_time:.2f}s\")\n",
" \n",
" # Get top-k predictions\n",
" top_k_values, top_k_indices = torch.topk(probabilities, top_k, dim=-1)\n",
" \n",
" predictions = []\n",
" for i in range(top_k):\n",
" idx = top_k_indices[0][i].item()\n",
" confidence = top_k_values[0][i].item()\n",
" action = id2label[idx]\n",
" predictions.append((action, confidence))\n",
" \n",
" total_time = extract_time + process_time + predict_time\n",
" print(f\"β
Total processing time: {total_time:.2f}s\")\n",
" \n",
" return predictions\n",
" \n",
" except Exception as e:\n",
" print(f\"β Error during prediction: {e}\")\n",
" raise e\n",
"\n",
"def display_predictions(predictions: List[Tuple[str, float]], video_path: str = None):\n",
" \"\"\"\n",
" Display prediction results in a nice format.\n",
" \"\"\"\n",
" print(\"\\n\" + \"=\"*50)\n",
" print(\"π¬ VIDEO ACTION RECOGNITION RESULTS\")\n",
" print(\"=\"*50)\n",
" \n",
" if video_path:\n",
" print(f\"πΉ Video: {Path(video_path).name}\\n\")\n",
" \n",
" for i, (action, confidence) in enumerate(predictions, 1):\n",
" bar_length = int(confidence * 30)\n",
" bar = \"β\" * bar_length + \"β\" * (30 - bar_length)\n",
" print(f\"{i:2d}. {action:<35} {confidence:6.1%} β{bar}β\")\n",
" \n",
" print(\"\\n\" + \"=\"*50)\n",
" print(f\"π Top prediction: {predictions[0][0]} ({predictions[0][1]:.1%} confidence)\")\n",
" print(\"=\"*50)\n",
"\n",
"print(\"π οΈ Helper functions defined!\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "upload-section"
},
"source": [
"## π€ Upload Your Video\n",
"\n",
"Upload a video file to analyze. Supported formats: MP4, MOV, AVI, MKV"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "upload-widget"
},
"outputs": [],
"source": [
"# Create upload widget\n",
"upload_widget = widgets.FileUpload(\n",
" accept='.mp4,.mov,.avi,.mkv',\n",
" multiple=False,\n",
" description='Choose Video',\n",
" disabled=False,\n",
" button_style='info',\n",
" icon='upload'\n",
")\n",
"\n",
"# Create predict button\n",
"predict_button = widgets.Button(\n",
" description='π― Analyze Video',\n",
" disabled=True,\n",
" button_style='success',\n",
" icon='play'\n",
")\n",
"\n",
"# Create output widget\n",
"output_widget = widgets.Output()\n",
"\n",
"# Global variable to store uploaded file path\n",
"uploaded_file_path = None\n",
"\n",
"def on_upload_change(change):\n",
" global uploaded_file_path\n",
" if upload_widget.value:\n",
" # Save uploaded file\n",
" filename = list(upload_widget.value.keys())[0]\n",
" content = upload_widget.value[filename]['content']\n",
" \n",
" # Create uploads directory if it doesn't exist\n",
" os.makedirs('/content/uploads', exist_ok=True)\n",
" uploaded_file_path = f'/content/uploads/{filename}'\n",
" \n",
" with open(uploaded_file_path, 'wb') as f:\n",
" f.write(content)\n",
" \n",
" predict_button.disabled = False\n",
" with output_widget:\n",
" clear_output()\n",
" print(f\"β
Video uploaded successfully: {filename}\")\n",
" print(f\"π File size: {len(content) / (1024*1024):.1f} MB\")\n",
" \n",
" # Display video preview\n",
" display(Video(uploaded_file_path, width=400, height=300))\n",
"\n",
"def on_predict_click(button):\n",
" global uploaded_file_path\n",
" if uploaded_file_path and os.path.exists(uploaded_file_path):\n",
" with output_widget:\n",
" clear_output(wait=True)\n",
" print(\"π Starting video analysis...\")\n",
" print(\"β³ This may take a few moments...\\n\")\n",
" \n",
" try:\n",
" # Make predictions\n",
" predictions = predict_actions(uploaded_file_path, top_k=10)\n",
" \n",
" # Display results\n",
" display_predictions(predictions, uploaded_file_path)\n",
" \n",
" # Show video again\n",
" print(\"\\nπΉ Analyzed Video:\")\n",
" display(Video(uploaded_file_path, width=400, height=300))\n",
" \n",
" except Exception as e:\n",
" print(f\"β Error analyzing video: {e}\")\n",
" print(\"\\nπ‘ Tips:\")\n",
" print(\"- Make sure your video file is not corrupted\")\n",
" print(\"- Try a different video format (MP4 recommended)\")\n",
" print(\"- Ensure the video contains clear human actions\")\n",
"\n",
"# Connect event handlers\n",
"upload_widget.observe(on_upload_change, names='value')\n",
"predict_button.on_click(on_predict_click)\n",
"\n",
"# Display widgets\n",
"print(\"π€ Upload your video file below:\")\n",
"display(upload_widget)\n",
"display(predict_button)\n",
"display(output_widget)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "examples-section"
},
"source": [
"## π¬ Test with Sample Videos\n",
"\n",
"Don't have a video? Try these sample videos from the web:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "sample-videos"
},
"outputs": [],
"source": [
"# Sample video URLs (you can replace with your own)\n",
"sample_videos = {\n",
" \"Basketball\": \"https://sample-videos.com/zip/10/mp4/SampleVideo_720x480_1mb.mp4\",\n",
" \"Dancing\": \"https://www.learningcontainer.com/wp-content/uploads/2020/05/sample-mp4-file.mp4\",\n",
" \"Cooking\": \"https://file-examples.com/storage/fef68c5d7aa9a5c23b0/2017/10/file_example_MP4_480_1_5MG.mp4\"\n",
"}\n",
"\n",
"def download_and_analyze(video_name, video_url):\n",
" \"\"\"\n",
" Download a sample video and analyze it.\n",
" \"\"\"\n",
" try:\n",
" print(f\"π₯ Downloading {video_name} video...\")\n",
" \n",
" # Download video\n",
" import urllib.request\n",
" os.makedirs('/content/samples', exist_ok=True)\n",
" video_path = f'/content/samples/{video_name.lower()}.mp4'\n",
" \n",
" urllib.request.urlretrieve(video_url, video_path)\n",
" print(f\"β
Downloaded: {video_name}\")\n",
" \n",
" # Analyze video\n",
" predictions = predict_actions(video_path, top_k=5)\n",
" display_predictions(predictions, video_path)\n",
" \n",
" # Show video\n",
" print(f\"\\nπΉ Sample Video - {video_name}:\")\n",
" display(Video(video_path, width=400, height=300))\n",
" \n",
" except Exception as e:\n",
" print(f\"β Error with sample video {video_name}: {e}\")\n",
" print(\"π‘ You can still upload your own video above!\")\n",
"\n",
"# Create buttons for sample videos\n",
"sample_buttons = []\n",
"for name, url in sample_videos.items():\n",
" button = widgets.Button(\n",
" description=f\"Try {name}\",\n",
" button_style='info',\n",
" icon='play'\n",
" )\n",
" button.on_click(lambda b, n=name, u=url: download_and_analyze(n, u))\n",
" sample_buttons.append(button)\n",
"\n",
"print(\"π¬ Click a button below to test with sample videos:\")\n",
"sample_output = widgets.Output()\n",
"\n",
"display(widgets.HBox(sample_buttons))\n",
"display(sample_output)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "model-info"
},
"source": [
"## π Model Information\n",
"\n",
"Learn more about the TimeSformer model and what actions it can recognize."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "show-model-info"
},
"outputs": [],
"source": [
"# Display model information\n",
"print(\"π€ TimeSformer Model Information\")\n",
"print(\"=\" * 50)\n",
"print(f\"Model Name: {MODEL_NAME}\")\n",
"print(f\"Total Actions: {len(id2label)}\")\n",
"print(f\"Input Frames: {FRAMES_PER_VIDEO}\")\n",
"print(f\"Model Parameters: {sum(p.numel() for p in model.parameters()):,}\")\n",
"print(f\"Device: {device}\")\n",
"print(f\"Model Size: ~{sum(p.numel() * 4 for p in model.parameters()) / (1024**2):.1f} MB\")\n",
"\n",
"print(\"\\nπ·οΈ Sample Action Categories:\")\n",
"print(\"=\" * 50)\n",
"\n",
"# Show some sample actions\n",
"sample_actions = [\n",
" \"playing basketball\", \"cooking\", \"dancing\", \"swimming\", \"running\",\n",
" \"playing guitar\", \"yoga\", \"boxing\", \"cycling\", \"reading\",\n",
" \"writing\", \"typing\", \"singing\", \"painting\", \"exercising\"\n",
"]\n",
"\n",
"# Find matching actions in the model's vocabulary\n",
"found_actions = []\n",
"for action in sample_actions:\n",
" for label in id2label.values():\n",
" if action.lower() in label.lower() or any(word in label.lower() for word in action.split()):\n",
" found_actions.append(label)\n",
" break\n",
"\n",
"# Display found actions in columns\n",
"for i, action in enumerate(found_actions[:15], 1):\n",
" print(f\"{i:2d}. {action}\")\n",
"\n",
"if len(id2label) > 15:\n",
" print(f\"... and {len(id2label) - 15} more actions!\")\n",
"\n",
"print(\"\\nπ References:\")\n",
"print(\"=\" * 50)\n",
"print(\"π Model: https://huggingface.co/facebook/timesformer-base-finetuned-k400\")\n",
"print(\"π Paper: https://arxiv.org/abs/2102.05095\")\n",
"print(\"πΎ Dataset: Kinetics-400\")\n",
"print(\"π’ Developed by: Facebook AI Research\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tips-section"
},
"source": [
"## π‘ Tips for Better Results\n",
"\n",
"To get the best action recognition results:\n",
"\n",
"### πΉ Video Quality\n",
"- Use clear, well-lit videos\n",
"- Ensure the action is clearly visible\n",
"- Avoid overly shaky or blurry footage\n",
"- Keep video duration between 2-10 seconds for best results\n",
"\n",
"### π― Action Types\n",
"- The model works best with distinct, recognizable actions\n",
"- Sports activities tend to have high accuracy\n",
"- Daily activities like cooking, reading, exercising work well\n",
"- Subtle or very specific actions may not be recognized\n",
"\n",
"### βοΈ Technical Tips\n",
"- MP4 format is recommended\n",
"- Videos under 50MB process faster\n",
"- GPU acceleration significantly speeds up processing\n",
"- The model samples 32 frames uniformly from your video\n",
"\n",
"### π Understanding Results\n",
"- Confidence scores above 50% are generally reliable\n",
"- Check multiple top predictions for similar actions\n",
"- Some actions may have similar names but different meanings\n",
"- The model may detect related actions (e.g., \"exercising\" vs \"doing aerobics\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "troubleshooting"
},
"source": [
"## π§ Troubleshooting\n",
"\n",
"If you encounter issues, try these solutions:\n",
"\n",
"### Common Issues:\n",
"\n",
"1. **\"Cannot read video file\"**\n",
" - Check if the video file is corrupted\n",
" - Try converting to MP4 format\n",
" - Ensure file size is reasonable (<200MB)\n",
"\n",
"2. **\"CUDA out of memory\"**\n",
" - Restart the runtime and try again\n",
" - Use smaller video files\n",
" - The model will fall back to CPU if needed\n",
"\n",
"3. **\"Model loading failed\"**\n",
" - Check internet connection\n",
" - Restart the runtime\n",
" - Re-run the model setup cell\n",
"\n",
"4. **\"Poor predictions\"**\n",
" - Try videos with clearer actions\n",
" - Ensure good lighting and video quality\n",
" - Check if the action is in the model's training data (Kinetics-400)\n",
"\n",
"### Need Help?\n",
"- π Report issues: [GitHub Issues](https://github.com/u-justine/VideoActionRecognition/issues)\n",
"- π§ Contact: Create an issue on GitHub\n",
"- π Documentation: Check the repository README\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "conclusion"
},
"source": [
"## π Conclusion\n",
"\n",
"You've successfully set up and used the Video Action Recognition system! Here's what you've accomplished:\n",
"\n",
"### β
What You've Done\n",
"- Loaded Facebook's TimeSformer model with 400+ action classes\n",
"- Processed videos using GPU acceleration (when available)\n",
"- Extracted and analyzed video frames for action recognition\n",
"- Got detailed predictions with confidence scores\n",
"\n",
"### π Next Steps\n",
"- Try different types of videos to explore the model's capabilities\n",
"- Experiment with various action categories (sports, daily activities, etc.)\n",
"- Consider fine-tuning the model for your specific use case\n",
"- Deploy this as a web application using Streamlit or Gradio\n",
"\n",
"### π± Deploy Your Own\n",
"Want to create your own video action recognition app?\n",
"\n",
"1. **Local Setup**: Clone the repository and run locally\n",
" ```bash\n",
" git clone https://github.com/u-justine/VideoActionRecognition.git\n",
" cd VideoActionRecognition\n",
" ./run_app.sh\n",
" ```\n",
"\n",
"2. **Cloud Deployment**: Deploy on platforms like:\n",
" - Hugging Face Spaces\n",
" - Streamlit Cloud \n",
" - Google Cloud Run\n",
" - AWS or Azure\n",
"\n",
"3. **Customization**: Modify the code to:\n",
" - Add your own action categories\n",
" - Implement batch processing\n",
" - Create REST API endpoints\n",
" - Add real-time video processing\n",
"\n",
"### π Share Your Results\n",
"- Star the repository if you found it useful: [β GitHub Repo](https://github.com/u-justine/VideoActionRecognition)\n",
"- Share your interesting results or improvements\n",
"- Contribute to the project with bug fixes or new features\n",
"\n",
"### π Learn More\n",
"- **TimeSformer Paper**: [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095)\n",
"- **Kinetics Dataset**: [A Large-Scale Video Dataset](https://deepmind.com/research/open-source/kinetics)\n",
"- **Transformers Library**: [Hugging Face Documentation](https://huggingface.co/docs/transformers)\n",
"\n",
"---\n",
"\n",
"**Happy Video Analysis! π¬β¨**\n",
"\n",
"If you have questions or want to contribute, check out the [GitHub repository](https://github.com/u-justine/VideoActionRecognition) or open an issue.\n"
|