File size: 18,218 Bytes
eb09c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
#!/usr/bin/env python3
import argparse
import json
import logging
from pathlib import Path
from typing import List, Tuple, Optional
import warnings
import numpy as np
from PIL import Image
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
try:
import decord # type: ignore
_decord_error = None
except Exception as e: # pragma: no cover
_decord_error = e
decord = None # type: ignore
try:
import cv2 # type: ignore
except Exception: # pragma: no cover
cv2 = None # type: ignore
import torch
from transformers import AutoImageProcessor, TimesformerForVideoClassification
MODEL_ID = "facebook/timesformer-base-finetuned-k400"
def fix_numpy_compatibility():
"""Check and fix NumPy compatibility issues."""
try:
# Test basic numpy operations that are used in video processing
test_array = np.array([1, 2, 3], dtype=np.float32)
# Test stacking operations
np.stack([test_array, test_array])
# Test array creation and manipulation
test_image_array = np.zeros((224, 224, 3), dtype=np.float32)
test_video_array = np.stack([test_image_array, test_image_array], axis=0)
# If we reach here, numpy is working
logging.debug(f"NumPy {np.__version__} compatibility check passed")
return True
except Exception as e:
logging.warning(f"NumPy compatibility issue: {e}")
# For NumPy 2.x compatibility, try alternative approaches
try:
# Alternative stack operation that works with both versions
test_list = [test_array, test_array]
stacked = np.array(test_list)
logging.info("Using NumPy 2.x compatible operations")
return True
except Exception as e2:
logging.error(f"NumPy compatibility cannot be resolved: {e2}")
return False
def _read_video_frames_decord(video_path: Path, num_frames: int) -> List[Image.Image]:
"""Read video frames using decord library."""
vr = decord.VideoReader(str(video_path))
total = len(vr)
if total == 0:
raise RuntimeError(f"Video has no frames: {video_path}")
# Handle edge case where video has fewer frames than requested
actual_num_frames = min(num_frames, total)
if actual_num_frames <= 0:
raise RuntimeError(f"Invalid frame count: {actual_num_frames}")
indices = np.linspace(0, total - 1, num=actual_num_frames, dtype=int).tolist()
try:
frames = vr.get_batch(indices).asnumpy()
return [Image.fromarray(frame) for frame in frames]
except Exception as e:
logging.warning(f"Decord batch read failed: {e}")
# Fallback to individual frame reading
frames = []
for idx in indices:
try:
frame = vr[idx].asnumpy()
frames.append(Image.fromarray(frame))
except Exception:
continue
return frames
def _read_video_frames_cv2(video_path: Path, num_frames: int) -> List[Image.Image]:
"""Read video frames using OpenCV."""
if cv2 is None:
raise RuntimeError("OpenCV (opencv-python) is required if decord is not installed.")
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
raise RuntimeError(f"Failed to open video: {video_path}")
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total == 0:
cap.release()
raise RuntimeError(f"Video has no frames: {video_path}")
# Handle edge case where video has fewer frames than requested
actual_num_frames = min(num_frames, total)
if actual_num_frames <= 0:
raise RuntimeError(f"Invalid frame count: {actual_num_frames}")
indices = np.linspace(0, max(total - 1, 0), num=actual_num_frames, dtype=int).tolist()
result: List[Image.Image] = []
current_idx = 0
frame_pos_set_ok = hasattr(cv2, "CAP_PROP_POS_FRAMES")
for target in indices:
try:
if frame_pos_set_ok:
cap.set(cv2.CAP_PROP_POS_FRAMES, int(target))
ok, frame = cap.read()
if not ok:
continue
else:
# Fallback: read sequentially until we reach target
while current_idx <= target:
ok, frame = cap.read()
if not ok:
break
current_idx += 1
if not ok:
continue
# Convert BGR->RGB and to PIL
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result.append(Image.fromarray(frame_rgb))
except Exception as e:
logging.warning(f"Error reading frame {target}: {e}")
continue
cap.release()
return result
def _read_video_frames(video_path: Path, num_frames: int) -> List[Image.Image]:
"""Read uniformly sampled frames using decord if available, otherwise OpenCV."""
frames = []
last_error = None
# Try decord first
if decord is not None:
try:
frames = _read_video_frames_decord(video_path, num_frames)
if frames:
logging.debug(f"Successfully read {len(frames)} frames using decord")
return frames
except Exception as e:
last_error = e
logging.warning(f"Decord failed: {e}")
# Fallback to OpenCV
try:
frames = _read_video_frames_cv2(video_path, num_frames)
if frames:
logging.debug(f"Successfully read {len(frames)} frames using OpenCV")
return frames
except Exception as e:
last_error = e
logging.warning(f"OpenCV failed: {e}")
# If both failed, raise the last error
if last_error:
raise RuntimeError(f"Failed to read video frames: {last_error}")
else:
raise RuntimeError("No video reading library available")
def normalize_frames(frames: List[Image.Image], required_frames: int, target_size: Tuple[int, int] = (224, 224)) -> List[Image.Image]:
"""Normalize frames to required count and size."""
if not frames:
raise RuntimeError("No frames to normalize")
# Adjust frame count
original_count = len(frames)
if len(frames) < required_frames:
# Pad by repeating frames cyclically
padding_needed = required_frames - len(frames)
for i in range(padding_needed):
frames.append(frames[i % original_count])
logging.info(f"Padded frames from {original_count} to {required_frames}")
elif len(frames) > required_frames:
# Uniformly sample frames
indices = np.linspace(0, len(frames) - 1, num=required_frames, dtype=int)
frames = [frames[i] for i in indices]
logging.info(f"Sampled {required_frames} frames from {original_count}")
# Normalize frame properties
normalized_frames = []
for i, frame in enumerate(frames):
try:
# Ensure RGB mode
if frame.mode != 'RGB':
frame = frame.convert('RGB')
# Resize to target size
if frame.size != target_size:
frame = frame.resize(target_size, Image.Resampling.LANCZOS)
normalized_frames.append(frame)
except Exception as e:
logging.error(f"Error normalizing frame {i}: {e}")
# Create a black frame as fallback
black_frame = Image.new('RGB', target_size, (0, 0, 0))
normalized_frames.append(black_frame)
return normalized_frames
def create_tensor_from_frames(frames: List[Image.Image], processor=None) -> torch.Tensor:
"""Create tensor from frames using multiple fallback strategies."""
# Strategy 1: Use processor if available and working
if processor is not None:
strategies = [
lambda: processor(images=frames, return_tensors="pt"),
lambda: processor(videos=frames, return_tensors="pt"),
lambda: processor(frames, return_tensors="pt"),
]
for i, strategy in enumerate(strategies, 1):
try:
inputs = strategy()
if 'pixel_values' in inputs:
tensor = inputs['pixel_values']
logging.info(f"Strategy {i} succeeded, tensor shape: {tensor.shape}")
return tensor
except Exception as e:
logging.debug(f"Processor strategy {i} failed: {e}")
continue
# Strategy 2: Direct PyTorch tensor creation (bypass numpy compatibility issues)
try:
logging.info("Using direct PyTorch tensor creation")
# Convert frames directly to PyTorch tensors
frame_tensors = []
for i, frame in enumerate(frames):
# Ensure frame is in the right format
if frame.mode != 'RGB':
frame = frame.convert('RGB')
if frame.size != (224, 224):
frame = frame.resize((224, 224), Image.Resampling.LANCZOS)
# Get pixel data and reshape properly
pixels = list(frame.getdata())
logging.debug(f"Frame {i}: got {len(pixels)} pixels")
# Create tensor with shape (height, width, channels)
pixel_tensor = torch.tensor(pixels, dtype=torch.float32).view(224, 224, 3)
pixel_tensor = pixel_tensor / 255.0 # Normalize to [0, 1]
logging.debug(f"Frame {i} tensor shape: {pixel_tensor.shape}")
frame_tensors.append(pixel_tensor)
# Stack frames into video tensor: (num_frames, height, width, channels)
video_tensor = torch.stack(frame_tensors, dim=0)
logging.debug(f"Stacked tensor shape: {video_tensor.shape}")
# Rearrange dimensions for TimeSformer: (batch, channels, num_frames, height, width)
# Current: (num_frames=8, height=224, width=224, channels=3)
# Target: (batch=1, num_frames=8, channels=3, height=224, width=224)
video_tensor = video_tensor.permute(0, 3, 1, 2) # (frames, height, width, channels) -> (frames, channels, height, width)
logging.debug(f"After first permute: {video_tensor.shape}")
video_tensor = video_tensor.unsqueeze(0) # (frames, channels, height, width) -> (1, frames, channels, height, width)
logging.debug(f"After second permute and unsqueeze: {video_tensor.shape}")
logging.info(f"Direct tensor creation succeeded, final shape: {video_tensor.shape}")
return video_tensor
except Exception as e:
logging.debug(f"Direct tensor creation failed: {e}")
# Strategy 3: Manual tensor creation with numpy fallback
try:
logging.info("Using numpy-based tensor creation")
# Convert frames to numpy arrays
frame_arrays = []
for frame in frames:
# Ensure frame is in the right format
if frame.mode != 'RGB':
frame = frame.convert('RGB')
if frame.size != (224, 224):
frame = frame.resize((224, 224), Image.Resampling.LANCZOS)
# Convert to array and normalize
frame_array = np.array(frame, dtype=np.float32)
frame_array = frame_array / 255.0 # Normalize to [0, 1]
frame_arrays.append(frame_array)
# Stack frames: (num_frames, height, width, channels)
try:
video_array = np.stack(frame_arrays, axis=0)
except Exception:
# Fallback for compatibility issues
video_array = np.array(frame_arrays)
# Convert to PyTorch tensor
video_tensor = torch.from_numpy(video_array)
logging.debug(f"Numpy tensor initial shape: {video_tensor.shape}")
# Rearrange dimensions for TimeSformer: (batch, num_frames, channels, height, width)
# Current: (num_frames, height, width, channels)
# Target: (batch, num_frames, channels, height, width)
video_tensor = video_tensor.permute(0, 3, 1, 2) # (frames, height, width, channels) -> (frames, channels, height, width)
video_tensor = video_tensor.unsqueeze(0) # (frames, channels, height, width) -> (1, frames, channels, height, width)
logging.info(f"Numpy tensor creation succeeded, shape: {video_tensor.shape}")
return video_tensor
except Exception as e:
logging.debug(f"Numpy tensor creation failed: {e}")
# Strategy 4: Pure Python fallback (slowest but most compatible)
try:
logging.info("Using pure Python tensor creation")
# Convert frames to pure Python lists
video_data = []
for frame in frames:
if frame.mode != 'RGB':
frame = frame.convert('RGB')
if frame.size != (224, 224):
frame = frame.resize((224, 224), Image.Resampling.LANCZOS)
# Get pixel data as list of RGB tuples
pixels = list(frame.getdata())
# Convert to 3D array structure: [height][width][channels]
frame_data = []
for row in range(224):
row_data = []
for col in range(224):
pixel_idx = row * 224 + col
r, g, b = pixels[pixel_idx]
row_data.append([r/255.0, g/255.0, b/255.0]) # Normalize
frame_data.append(row_data)
video_data.append(frame_data)
# Convert to tensor
video_tensor = torch.tensor(video_data, dtype=torch.float32)
logging.debug(f"Pure Python tensor initial shape: {video_tensor.shape}")
# Rearrange dimensions: (frames, height, width, channels) -> (batch, frames, channels, height, width)
video_tensor = video_tensor.permute(0, 3, 1, 2) # (frames, height, width, channels) -> (frames, channels, height, width)
video_tensor = video_tensor.unsqueeze(0) # (frames, channels, height, width) -> (1, frames, channels, height, width)
logging.info(f"Pure Python tensor creation succeeded, shape: {video_tensor.shape}")
return video_tensor
except Exception as e:
raise RuntimeError(f"All tensor creation strategies failed. Last error: {e}")
def load_model(device: Optional[str] = None):
"""Load the TimeSformer model and processor."""
device = device or ("cuda" if torch.cuda.is_available() else "cpu")
try:
logging.info("Loading TimeSformer model...")
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = TimesformerForVideoClassification.from_pretrained(MODEL_ID)
model.to(device)
model.eval()
logging.info(f"Model loaded successfully on {device}")
return processor, model, device
except Exception as e:
logging.error(f"Failed to load model: {e}")
raise RuntimeError(f"Model loading failed: {e}")
def predict_actions(video_path: str, top_k: int = 5) -> List[Tuple[str, float]]:
"""Run inference on a video and return top-k (label, score)."""
# Check numpy compatibility first
if not fix_numpy_compatibility():
logging.warning("NumPy compatibility issues detected, but continuing with fallbacks")
# Don't fail completely - try to continue with available functionality
try:
processor, model, device = load_model()
required_frames = int(getattr(model.config, "num_frames", 8))
logging.info(f"Processing video: {video_path}")
logging.info(f"Required frames: {required_frames}")
# Read video frames
frames = _read_video_frames(Path(video_path), num_frames=required_frames)
if not frames:
raise RuntimeError("Could not extract any frames from the video")
logging.info(f"Extracted {len(frames)} frames")
# Normalize frames
frames = normalize_frames(frames, required_frames)
logging.info(f"Normalized to {len(frames)} frames")
# Create tensor
pixel_values = create_tensor_from_frames(frames, processor)
# Move to device
pixel_values = pixel_values.to(device)
# Run inference
logging.info("Running inference...")
with torch.no_grad():
outputs = model(pixel_values=pixel_values)
logits = outputs.logits
# Apply softmax to get probabilities
probs = torch.softmax(logits, dim=-1)[0]
# Get top-k predictions
scores, indices = torch.topk(probs, k=top_k)
# Convert to labels
results = []
for score, idx in zip(scores.cpu(), indices.cpu()):
label = model.config.id2label[idx.item()]
results.append((label, float(score)))
logging.info("Prediction completed successfully")
return results
except Exception as e:
logging.error(f"Prediction failed: {e}")
raise RuntimeError(f"Video processing error: {e}")
def main():
"""Command line interface."""
parser = argparse.ArgumentParser(description="Predict actions in a video using TimeSformer")
parser.add_argument("video", type=str, help="Path to input video file")
parser.add_argument("--top-k", type=int, default=5, help="Top-k predictions to show")
parser.add_argument("--json", action="store_true", help="Output JSON instead of text")
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose logging")
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
try:
preds = predict_actions(args.video, top_k=args.top_k)
if args.json:
print(json.dumps([{"label": l, "score": s} for l, s in preds], indent=2))
else:
print(f"\nTop {len(preds)} predictions for: {args.video}")
print("-" * 50)
for i, (label, score) in enumerate(preds, 1):
print(f"{i:2d}. {label:<30} ({score:.3f})")
except Exception as e:
print(f"Error: {e}")
return 1
return 0
if __name__ == "__main__":
exit(main())
|