File size: 2,408 Bytes
0346b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import transformers
import random

# Define the model configuration and tokenizer
config = transformers.AutoConfig.from_pretrained("bert-base-uncased")
tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")

# Load the pretrained model
model = transformers.AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", config=config)

# Set the hyperparameters for fine-tuning
num_epochs = 3
batch_size = 32
learning_rate = 2e-5

# Create the model optimizer
optimizer = transformers.AdamW(model.parameters(), lr=learning_rate)

# Define the data collator
def collate_fn(data):
    input_ids = torch.tensor([tokenizer(text, padding="max_length", truncation=True)["input_ids"] for text in data["text"]])
    attention_mask = torch.tensor([tokenizer(text, padding="max_length", truncation=True)["attention_mask"] for text in data["text"]])
    labels = torch.tensor(data["label"])
    return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}

# Split the training data into training and validation sets
def split_data(data, validation_size=0.2):
    validation_indices = random.sample(range(len(data)), int(len(data) * validation_size))
    train_data = []
    val_data = []
    for i, item in enumerate(data):
        if i in validation_indices:
            val_data.append(item)
        else:
            train_data.append(item)
    return train_data, val_data

# Split the training data
train_data, val_data = split_data(train_data, validation_size=0.2)

# Finetune the model
for epoch in range(num_epochs):
    # Create the training data loader
    train_loader = transformers.DataLoader(train_data, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)

    # Train the model for one epoch
    model.train()
    for batch in train_loader:
        optimizer.zero_grad()
        outputs = model(**batch)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        

    # Evaluate the model on the validation dataset
    model.eval()
    with torch.no_grad():
        val_loss = 0.0
        for batch in val_loader:
            outputs = model(**batch)
            val_loss += outputs.loss.item()

    print("Epoch {}: Train Loss: {:.4f} Val Loss: {:.4f}".format(epoch + 1, train_loss / len(train_loader), val_loss / len(val_loader)))

# Save the fine-tuned model
model.save_pretrained("finetuned_model")