Spaces:
Sleeping
Sleeping
File size: 117,652 Bytes
2e9cc46 c349eca 2e9cc46 503556f bc5bff9 503556f dab32c8 ec1ed75 dab32c8 309ccf7 dab32c8 c349eca 2e9cc46 a453558 2e9cc46 f349331 2e9cc46 e935875 2e9cc46 bc5bff9 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 dab32c8 ad2cf35 dab32c8 ad2cf35 8f619d5 dab32c8 ad2cf35 8f619d5 ad2cf35 dab32c8 a453558 ad2cf35 8f619d5 a453558 837e5b4 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 a453558 dab32c8 ad2cf35 a453558 dab32c8 309ccf7 ad2cf35 837e5b4 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 a453558 dab32c8 309ccf7 a453558 ad2cf35 837e5b4 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 a453558 ad2cf35 dab32c8 309ccf7 ad2cf35 a453558 837e5b4 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 a453558 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 309ccf7 ad2cf35 a453558 837e5b4 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 a453558 dab32c8 ad2cf35 a453558 dab32c8 309ccf7 ad2cf35 a453558 837e5b4 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 dab32c8 ad2cf35 a453558 dab32c8 ad2cf35 dab32c8 309ccf7 ad2cf35 a453558 837e5b4 ad2cf35 dab32c8 ad2cf35 8f619d5 dab32c8 8f619d5 dab32c8 ad2cf35 8f619d5 ad2cf35 dab32c8 2e9cc46 a453558 2e9cc46 309ccf7 2e9cc46 309ccf7 f349331 2e9cc46 f349331 2e9cc46 f349331 309ccf7 f349331 2e9cc46 f349331 2e9cc46 f349331 2e9cc46 f349331 309ccf7 f349331 503556f ec1ed75 503556f ec1ed75 309ccf7 ec1ed75 503556f ec1ed75 309ccf7 ec1ed75 503556f ec1ed75 f349331 309ccf7 f349331 ec1ed75 f349331 309ccf7 f349331 309ccf7 f349331 ec1ed75 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 e935875 2e9cc46 309ccf7 2e9cc46 ec1ed75 2e9cc46 f349331 2e9cc46 e935875 a453558 e935875 a453558 e935875 a453558 2e9cc46 e935875 2e9cc46 75d8ea0 2e9cc46 75d8ea0 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 503556f 2e9cc46 ec1ed75 2e9cc46 503556f a453558 503556f a453558 503556f 2e9cc46 ec1ed75 2e9cc46 a453558 2e9cc46 ec1ed75 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 c349eca 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 07f29bc 2e9cc46 07f29bc 2e9cc46 a453558 c349eca a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 dab32c8 a453558 2e9cc46 dab32c8 2e9cc46 dab32c8 2e9cc46 dab32c8 2e9cc46 dab32c8 2e9cc46 dab32c8 a453558 dab32c8 a453558 2e9cc46 dab32c8 a453558 dab32c8 a453558 dab32c8 2e9cc46 dab32c8 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 309ccf7 2e9cc46 309ccf7 2e9cc46 309ccf7 2e9cc46 309ccf7 2e9cc46 309ccf7 2e9cc46 f349331 2e9cc46 f349331 2e9cc46 f349331 2e9cc46 f349331 2e9cc46 f349331 2e9cc46 f349331 2e9cc46 ec1ed75 2e9cc46 f349331 2e9cc46 f349331 ec1ed75 f349331 309ccf7 f349331 309ccf7 c349eca 309ccf7 dab32c8 f349331 c349eca f349331 309ccf7 f349331 309ccf7 f349331 309ccf7 f349331 309ccf7 f349331 309ccf7 f349331 ec1ed75 2e9cc46 f349331 2e9cc46 f349331 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 861f14f 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 a453558 2e9cc46 861f14f 2e9cc46 dab32c8 c349eca 2e9cc46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 |
import gradio as gr
import json
import os
import logging
import requests
import re
import time
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Anthropic API key
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY", "")
if ANTHROPIC_API_KEY:
logger.info("Claude API key found")
else:
logger.warning("Claude API key not found - using demo mode")
def clean_output_formatting(text):
"""Remove asterisks, hashtags, and convert tables to lists in NLP section"""
import re
# Remove all asterisks (bolding)
text = re.sub(r'\*\*([^*]+)\*\*', r'\1', text) # **text** -> text
text = re.sub(r'\*([^*]+)\*', r'\1', text) # *text* -> text
text = text.replace('**', '') # Remove any remaining **
text = text.replace('*', '') # Remove any remaining *
# Remove hashtags from headers (at start of line)
text = re.sub(r'^#{1,6}\s+', '', text, flags=re.MULTILINE) # Remove ### headers
# Also remove hashtags that appear mid-sentence or in other positions
text = re.sub(r'\s#{1,6}\s+', ' ', text) # Remove hashtags with spaces around them
text = re.sub(r'#{1,6}([A-Z])', r'\1', text) # Remove # before capitalized words like #SECTION
text = re.sub(r'^#{1,6}$', '', text, flags=re.MULTILINE) # Remove standalone hashtags on a line
text = re.sub(r'#([a-zA-Z])', r'\1', text) # Remove # before any word
text = text.replace('#', '') # Remove any remaining bare # symbols
# Convert tables to lists - more comprehensive approach
lines = text.split('\n')
cleaned_lines = []
in_table = False
for line in lines:
# Detect table start (line with multiple |)
if line.count('|') >= 2 and not in_table:
in_table = True
# Skip header line, will process data rows
continue
elif line.count('|') >= 2 and in_table:
# This is a table row - convert to bullet point
if not re.match(r'^\s*\|[\s\-\|]+\|\s*$', line): # Skip separator lines
cells = [cell.strip() for cell in line.split('|') if cell.strip()]
if len(cells) >= 2:
cleaned_lines.append(f"- {cells[0]}: {' '.join(cells[1:])}")
elif in_table and line.count('|') < 2:
# End of table
in_table = False
cleaned_lines.append(line)
else:
# Regular line
cleaned_lines.append(line)
text = '\n'.join(cleaned_lines)
return text
def segment_response_by_sections(response_text):
"""Segment response by section titles and return a dictionary of sections"""
required_sections = [
"1. SPEECH FACTORS",
"2. LANGUAGE SKILLS ASSESSMENT",
"3. COMPLEX SENTENCE ANALYSIS",
"4. FIGURATIVE LANGUAGE ANALYSIS",
"5. PRAGMATIC LANGUAGE ASSESSMENT",
"6. VOCABULARY AND SEMANTIC ANALYSIS",
"7. NLP-DERIVED LINGUISTIC FEATURES",
"8. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS",
"9. COGNITIVE-LINGUISTIC FACTORS",
"10. FLUENCY AND RHYTHM ANALYSIS",
"11. QUANTITATIVE METRICS",
"12. CLINICAL IMPLICATIONS",
"13. PROGNOSIS AND SUMMARY"
]
sections = {}
current_section = None
current_content = []
lines = response_text.split('\n')
for line in lines:
# Check if this line is a section header
is_section_header = False
for section in required_sections:
if section in line:
# Save previous section if exists
if current_section and current_content:
sections[current_section] = '\n'.join(current_content).strip()
# Start new section
current_section = section
current_content = []
is_section_header = True
break
# If not a section header, add to current section content
if not is_section_header and current_section:
current_content.append(line)
# Save the last section
if current_section and current_content:
sections[current_section] = '\n'.join(current_content).strip()
return sections
def combine_sections_smartly(sections_dict):
"""Combine sections in the correct order without duplicates"""
required_sections = [
"1. SPEECH FACTORS",
"2. LANGUAGE SKILLS ASSESSMENT",
"3. COMPLEX SENTENCE ANALYSIS",
"4. FIGURATIVE LANGUAGE ANALYSIS",
"5. PRAGMATIC LANGUAGE ASSESSMENT",
"6. VOCABULARY AND SEMANTIC ANALYSIS",
"7. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS",
"8. QUANTITATIVE METRICS AND NLP FEATURES"
]
combined_parts = []
combined_parts.append("COMPREHENSIVE SPEECH SAMPLE ANALYSIS")
combined_parts.append("")
for section in required_sections:
if section in sections_dict:
combined_parts.append(section)
combined_parts.append("")
combined_parts.append(sections_dict[section])
combined_parts.append("")
return '\n'.join(combined_parts)
def call_claude_api_quick_analysis(prompt):
"""Call Claude API for quick focused analysis - single response only"""
if not ANTHROPIC_API_KEY:
return "Error: Claude API key not configured. Please set ANTHROPIC_API_KEY environment variable."
try:
headers = {
"Content-Type": "application/json",
"x-api-key": ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01"
}
data = {
"model": "claude-sonnet-4-5",
"max_tokens": 4096,
"messages": [
{
"role": "user",
"content": prompt
}
]
}
response = requests.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=data,
timeout=180
)
if response.status_code == 200:
response_json = response.json()
raw_response = response_json['content'][0]['text']
# Clean formatting from response (removes **, #, tables)
cleaned_response = clean_output_formatting(raw_response)
return cleaned_response
else:
logger.error(f"Claude API error: {response.status_code} - {response.text}")
return f"Error: Claude API Error: {response.status_code}"
except Exception as e:
logger.error(f"Error calling Claude API: {str(e)}")
return f"Error: {str(e)}"
def call_claude_api(prompt):
"""Call Claude API directly (legacy function for backward compatibility)"""
return call_claude_api_quick_analysis(prompt)
def answer_quick_question(transcript_content, question, age, gender, slp_notes):
"""Answer a specific question about the transcript quickly using annotated version for accuracy"""
if not transcript_content or len(transcript_content.strip()) < 20:
return "Error: Please provide a transcript for analysis."
if not question or len(question.strip()) < 5:
return "Error: Please provide a specific question."
# First, annotate the transcript to get accurate markers
logger.info("Annotating transcript for accurate question answering...")
annotated_transcript = annotate_transcript(transcript_content, age, gender, slp_notes)
# Check if annotation was successful
if annotated_transcript.startswith("Error") or annotated_transcript.startswith("ANNOTATION INCOMPLETE"):
logger.warning("Using original transcript due to annotation issues")
analysis_transcript = transcript_content
else:
analysis_transcript = annotated_transcript
# Calculate linguistic metrics and lexical diversity
logger.info("Calculating linguistic metrics and lexical diversity...")
linguistic_metrics = calculate_linguistic_metrics(analysis_transcript)
lexical_diversity = calculate_advanced_lexical_diversity(analysis_transcript)
marker_analysis = analyze_annotation_markers(analysis_transcript)
# Build metrics section for the prompt
metrics_section = "\n\nLINGUISTIC METRICS FOR REFERENCE:\n"
metrics_section += f"Total words: {linguistic_metrics.get('total_words', 0)}\n"
metrics_section += f"Total sentences: {linguistic_metrics.get('total_sentences', 0)}\n"
metrics_section += f"Unique words: {linguistic_metrics.get('unique_words', 0)}\n"
metrics_section += f"Type-Token Ratio (TTR): {linguistic_metrics.get('type_token_ratio', 0):.3f}\n"
metrics_section += f"Mean Length of Utterance (words): {linguistic_metrics.get('mlu_words', 0):.2f}\n"
if lexical_diversity.get('library_available', False) and 'diversity_measures' in lexical_diversity:
measures = lexical_diversity['diversity_measures']
metrics_section += "\nAdvanced Lexical Diversity Measures:\n"
if measures.get('root_ttr') is not None:
metrics_section += f"Root TTR: {measures['root_ttr']:.4f}\n"
if measures.get('hdd') is not None:
metrics_section += f"HDD: {measures['hdd']:.4f}\n"
if measures.get('mtld') is not None:
metrics_section += f"MTLD: {measures['mtld']:.4f}\n"
marker_counts = marker_analysis.get('marker_counts', {})
if any(marker_counts.values()):
metrics_section += "\nAnnotation Marker Summary:\n"
metrics_section += f"Total fluency issues: {marker_analysis['category_totals'].get('fluency_issues', 0)}\n"
metrics_section += f"Total grammar errors: {marker_analysis['category_totals'].get('grammar_errors', 0)}\n"
metrics_section += f"Simple vocabulary: {marker_analysis['category_totals'].get('simple_vocabulary', 0)}\n"
metrics_section += f"Complex vocabulary: {marker_analysis['category_totals'].get('complex_vocabulary', 0)}\n"
# Add SLP notes to the prompt if provided
notes_section = ""
if slp_notes and slp_notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{slp_notes.strip()}
"""
prompt = f"""
You are a speech-language pathologist answering a specific question about a speech sample.
TRANSCRIPT (with annotation markers for reference):
{analysis_transcript}{notes_section}{metrics_section}
ANNOTATION MARKER REFERENCE:
FLUENCY: [FILLER], [FALSE_START], [REPETITION], [REVISION], [PAUSE]
WORD RETRIEVAL: [CIRCUMLOCUTION], [INCOMPLETE], [GENERIC], [WORD_SEARCH]
GRAMMAR: [GRAM_ERROR], [SYNTAX_ERROR], [MORPH_ERROR], [RUN_ON]
VOCABULARY: [SIMPLE_VOCAB], [COMPLEX_VOCAB], [SEMANTIC_ERROR]
PRAGMATICS: [TOPIC_SHIFT], [TANGENT], [INAPPROPRIATE], [COHERENCE_BREAK]
SENTENCE STRUCTURE: [SIMPLE_SENT], [COMPLEX_SENT], [COMPOUND_SENT], [FIGURATIVE]
OTHER: [PRONOUN_REF], [MAZING], [PERSEVERATION]
QUESTION: {question}
INSTRUCTIONS:
Provide a focused, detailed answer to the specific question asked
Include specific examples from the transcript with exact quotes
Use the annotation markers to identify and count specific features accurately
Incorporate the provided linguistic metrics and lexical diversity measures when relevant
Provide quantitative data when relevant (counts, percentages, rates)
Provide objective data interpretation only
Keep the response focused on the question but thorough in analysis
If the question relates to multiple areas, address all relevant aspects
Do NOT use asterisks (**), hashtags (#), or bold formatting in your response. Use plain text only.
Answer the question with specific evidence from the transcript:
"""
return call_claude_api_quick_analysis(prompt)
def analyze_targeted_area(transcript_content, analysis_area, age, gender, slp_notes):
"""Perform targeted analysis of a specific area using annotated transcript for accuracy"""
if not transcript_content or len(transcript_content.strip()) < 20:
return "Error: Please provide a transcript for analysis."
# First, annotate the transcript to get accurate markers
logger.info("Annotating transcript for accurate analysis...")
annotated_transcript = annotate_transcript(transcript_content, age, gender, slp_notes)
# Check if annotation was successful
if annotated_transcript.startswith("Error") or annotated_transcript.startswith("ANNOTATION INCOMPLETE"):
logger.warning("Using original transcript due to annotation issues")
analysis_transcript = transcript_content
else:
analysis_transcript = annotated_transcript
# Add SLP notes to the prompt if provided
notes_section = ""
if slp_notes and slp_notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{slp_notes.strip()}
"""
# Define analysis prompts for different areas
analysis_prompts = {
"Fluency and Disfluencies": """
Conduct a comprehensive FLUENCY ANALYSIS using annotation markers as reference.
TRANSCRIPT WITH ANNOTATION MARKERS:
{analysis_transcript}{notes_section}
MARKER REFERENCE:
[FILLER] = filler words (um, uh, like, you know, etc.)
[FALSE_START] = false starts and self-corrections
[REPETITION] = word/phrase repetitions
[REVISION] = revisions and restarts
[PAUSE] = hesitations and pauses
1. DISFLUENCY TYPES AND COUNTS:
Count each marker type precisely from the annotated transcript
Provide exact quotes showing each marker
Calculate rates per 100 words
2. DISFLUENCY PATTERNS:
Identify most frequent disfluency types by count
Analyze clustering patterns where disfluencies concentrate
Assess impact on communication effectiveness
3. FLUENCY FACILITATORS:
Identify fluent segments with no markers
Note contexts that show high fluency
Assess overall speech rhythm and flow
4. OBJECTIVE SUMMARY:
Provide data summary with counts and rates
List observed patterns only
Do NOT use asterisks (**), hashtags (#), or bold formatting. Use plain text only.
""",
"Grammar and Syntax": """
Conduct a comprehensive GRAMMATICAL ANALYSIS using annotation markers as reference.
TRANSCRIPT WITH ANNOTATION MARKERS:
{analysis_transcript}{notes_section}
MARKER REFERENCE:
[GRAM_ERROR] = grammatical errors
[SYNTAX_ERROR] = word order/syntax problems
[MORPH_ERROR] = morphological errors (plurals, tense, etc.)
[RUN_ON] = run-on sentences
1. MORPHOLOGICAL ANALYSIS:
Count [MORPH_ERROR] markers and categorize by type
Identify patterns in morphological errors
Analyze error frequency
2. SYNTACTIC STRUCTURES:
Analyze [SIMPLE_SENT], [COMPOUND_SENT], [COMPLEX_SENT] markers
Count [SYNTAX_ERROR] and [GRAM_ERROR] markers
Assess word order patterns
Evaluate conjunction and subordination use
3. VERB USAGE:
Identify [GRAM_ERROR] markers related to verbs
Analyze tense consistency
Count subject-verb agreement errors
4. OBJECTIVE SUMMARY:
List primary grammatical patterns observed
Provide count data only
Do NOT use asterisks (**), hashtags (#), or bold formatting. Use plain text only.
""",
"Vocabulary and Semantics": """
Conduct a comprehensive VOCABULARY ANALYSIS using annotation markers as reference.
TRANSCRIPT WITH ANNOTATION MARKERS:
{analysis_transcript}{notes_section}
MARKER REFERENCE:
[SIMPLE_VOCAB] = basic/high-frequency words
[COMPLEX_VOCAB] = sophisticated/low-frequency words
[SEMANTIC_ERROR] = inappropriate word choices
[GENERIC] = vague terms (thing, stuff)
[CIRCUMLOCUTION] = roundabout descriptions
[WORD_SEARCH] = explicit word-finding attempts
1. LEXICAL DIVERSITY:
Count [SIMPLE_VOCAB] and [COMPLEX_VOCAB] markers
Calculate vocabulary sophistication ratio
Identify vocabulary diversity patterns
2. SEMANTIC ACCURACY:
Count [SEMANTIC_ERROR] markers with quotes
Identify [GENERIC] term usage
Count [CIRCUMLOCUTION] and [WORD_SEARCH] markers
Assess word precision
3. VOCABULARY CATEGORIES:
Analyze patterns in vocabulary type markers
Identify high-frequency vs. low-frequency word usage
Assess conversational vs. academic vocabulary
4. WORD RETRIEVAL:
Count word-finding difficulties [WORD_SEARCH], [CIRCUMLOCUTION], [GENERIC]
Identify compensatory strategies
Assess retrieval efficiency by frequency
5. OBJECTIVE SUMMARY:
List vocabulary patterns observed with counts
Provide data summary only
Do NOT use asterisks (**), hashtags (#), or bold formatting. Use plain text only.
""",
"Pragmatics and Discourse": """
Conduct a comprehensive PRAGMATIC ANALYSIS using annotation markers as reference.
TRANSCRIPT WITH ANNOTATION MARKERS:
{analysis_transcript}{notes_section}
MARKER REFERENCE:
[TOPIC_SHIFT] = topic changes
[TANGENT] = tangential/off-topic speech
[INAPPROPRIATE] = inappropriate content
[COHERENCE_BREAK] = incoherent statements
[PRONOUN_REF] = unclear pronoun references
1. DISCOURSE ORGANIZATION:
Count [TOPIC_SHIFT] and [TANGENT] markers
Assess narrative structure and coherence
Evaluate logical idea sequencing
2. CONVERSATIONAL SKILLS:
Analyze topic maintenance between [TOPIC_SHIFT] markers
Assess response appropriateness
Evaluate communication effectiveness
3. REFERENTIAL COMMUNICATION:
Count [PRONOUN_REF] markers
Assess clarity of pronoun use
Evaluate referential precision
4. PRAGMATIC APPROPRIATENESS:
Count [INAPPROPRIATE] markers if present
Assess contextual appropriateness of content
Evaluate social communication awareness
5. OBJECTIVE SUMMARY:
List pragmatic patterns observed with marker counts
Provide data summary only
Do NOT use asterisks (**), hashtags (#), or bold formatting. Use plain text only.
""",
"Sentence Complexity": """
Conduct a comprehensive SENTENCE COMPLEXITY ANALYSIS using annotation markers as reference.
TRANSCRIPT WITH ANNOTATION MARKERS:
{analysis_transcript}{notes_section}
MARKER REFERENCE:
[SIMPLE_SENT] = simple sentences
[COMPOUND_SENT] = compound sentences
[COMPLEX_SENT] = complex sentences
[FIGURATIVE] = figurative language/idioms
1. SENTENCE TYPES:
Count [SIMPLE_SENT], [COMPOUND_SENT], [COMPLEX_SENT] markers
Calculate percentage distribution of each type
Provide examples of each type
2. CLAUSE ANALYSIS:
Analyze clause density from complex sentence markers
Count subordinate and coordinate clause patterns
Assess coordination and subordination use
3. PHRASE STRUCTURES:
Analyze complexity patterns within sentence markers
Assess phrase elaboration levels
Evaluate prepositional phrase usage
4. SYNTACTIC MATURITY:
Calculate Mean Length of Utterance (MLU) from sentence length patterns
List syntactic patterns observed
5. OBJECTIVE SUMMARY:
Provide complexity data with counts and percentages
List observed patterns only
Do NOT use asterisks (**), hashtags (#), or bold formatting. Use plain text only.
""",
"Word Finding and Retrieval": """
Conduct a comprehensive WORD RETRIEVAL ANALYSIS using annotation markers as reference.
TRANSCRIPT WITH ANNOTATION MARKERS:
{analysis_transcript}{notes_section}
MARKER REFERENCE:
[WORD_SEARCH] = explicit word-finding attempts
[CIRCUMLOCUTION] = roundabout descriptions as workarounds
[GENERIC] = vague terms (thing, stuff, whatsit)
[INCOMPLETE] = abandoned thoughts/word-finding failures
1. WORD-FINDING DIFFICULTIES:
Count [WORD_SEARCH], [CIRCUMLOCUTION], [GENERIC], [INCOMPLETE] markers
Provide exact quotes showing each type
Calculate frequency of each difficulty type
2. RETRIEVAL STRATEGIES:
Identify compensatory strategies from marker patterns
Analyze self-cueing attempts marked with [WORD_SEARCH]
Assess success rate from [CIRCUMLOCUTION] effectiveness
3. ERROR PATTERNS:
Categorize word-finding issues by marker type
Identify semantic vs. phonological retrieval issues
Analyze error consistency patterns
4. CONTEXTUAL FACTORS:
Identify contexts that show high [WORD_SEARCH] density
Assess topic complexity impact on word retrieval
Evaluate linguistic complexity effects
5. OBJECTIVE SUMMARY:
List word-finding patterns observed with marker counts
Provide data summary only
Do NOT use asterisks (**), hashtags (#), or bold formatting. Use plain text only.
"""
}
if analysis_area not in analysis_prompts:
return f"Error: Analysis area '{analysis_area}' not recognized. Available areas: {', '.join(analysis_prompts.keys())}"
# Get the base prompt and insert the analysis transcript
base_prompt_template = analysis_prompts[analysis_area]
base_prompt = base_prompt_template.format(analysis_transcript=analysis_transcript, notes_section=notes_section)
# Calculate linguistic metrics and lexical diversity
logger.info("Calculating linguistic metrics and lexical diversity...")
linguistic_metrics = calculate_linguistic_metrics(analysis_transcript)
lexical_diversity = calculate_advanced_lexical_diversity(analysis_transcript)
marker_analysis = analyze_annotation_markers(analysis_transcript)
# Build metrics section for the prompt
metrics_section = "\n\nLINGUISTIC METRICS FOR REFERENCE:\n"
metrics_section += f"Total words: {linguistic_metrics.get('total_words', 0)}\n"
metrics_section += f"Total sentences: {linguistic_metrics.get('total_sentences', 0)}\n"
metrics_section += f"Unique words: {linguistic_metrics.get('unique_words', 0)}\n"
metrics_section += f"Type-Token Ratio (TTR): {linguistic_metrics.get('type_token_ratio', 0):.3f}\n"
metrics_section += f"Mean Length of Utterance (words): {linguistic_metrics.get('mlu_words', 0):.2f}\n"
metrics_section += f"Mean Length of Utterance (morphemes): {linguistic_metrics.get('mlu_morphemes', 0):.2f}\n"
if lexical_diversity.get('library_available', False) and 'diversity_measures' in lexical_diversity:
measures = lexical_diversity['diversity_measures']
metrics_section += "\nAdvanced Lexical Diversity Measures:\n"
if measures.get('root_ttr') is not None:
metrics_section += f"Root TTR: {measures['root_ttr']:.4f}\n"
if measures.get('log_ttr') is not None:
metrics_section += f"Log TTR: {measures['log_ttr']:.4f}\n"
if measures.get('hdd') is not None:
metrics_section += f"HDD: {measures['hdd']:.4f}\n"
if measures.get('mtld') is not None:
metrics_section += f"MTLD: {measures['mtld']:.4f}\n"
marker_counts = marker_analysis.get('marker_counts', {})
if any(marker_counts.values()):
metrics_section += "\nAnnotation Marker Summary:\n"
metrics_section += f"Total fluency issues: {marker_analysis['category_totals'].get('fluency_issues', 0)}\n"
metrics_section += f"Total grammar errors: {marker_analysis['category_totals'].get('grammar_errors', 0)}\n"
metrics_section += f"Simple vocabulary: {marker_analysis['category_totals'].get('simple_vocabulary', 0)}\n"
metrics_section += f"Complex vocabulary: {marker_analysis['category_totals'].get('complex_vocabulary', 0)}\n"
vocab_ratio = marker_analysis['category_totals'].get('vocab_sophistication_ratio', 0)
if vocab_ratio > 0:
metrics_section += f"Vocabulary sophistication ratio: {vocab_ratio:.3f}\n"
prompt = f"""
You are a speech-language pathologist conducting a targeted analysis of a specific area.
ANALYSIS FOCUS: {analysis_area}
{base_prompt}{metrics_section}
INSTRUCTIONS:
Provide specific examples with exact quotes from the transcript
Include quantitative data using marker counts and percentages
Incorporate the provided linguistic metrics and lexical diversity measures when relevant
Provide objective data interpretation only
Focus on measurable observations
Be thorough but focused on the specified area
Conduct the targeted analysis:
"""
return call_claude_api_quick_analysis(prompt)
def check_annotation_completeness(original_transcript, annotated_transcript):
"""Check if annotation is complete by verifying last 3 words are present"""
import re
# Clean and extract words from original transcript
original_words = re.findall(r'\b\w+\b', original_transcript.strip())
if len(original_words) < 3:
return True, "Transcript too short to validate"
# Get last 3 words from original
last_three_words = original_words[-3:]
# Clean annotated transcript (remove markers but keep words)
cleaned_annotated = re.sub(r'\[.*?\]', '', annotated_transcript)
annotated_words = re.findall(r'\b\w+\b', cleaned_annotated.strip())
# Check if all last 3 words appear in the annotated transcript
missing_words = []
for word in last_three_words:
if word.lower() not in [w.lower() for w in annotated_words]:
missing_words.append(word)
if missing_words:
return False, f"Annotation appears incomplete. Missing words from end: {', '.join(missing_words)}"
# Additional check: verify the last few words appear near the end
if len(annotated_words) > 0:
last_annotated_words = annotated_words[-10:] # Check last 10 words
last_original_in_annotated = sum(1 for word in last_three_words
if word.lower() in [w.lower() for w in last_annotated_words])
if last_original_in_annotated < 2: # At least 2 of the last 3 should be near the end
return False, f"Annotation may be incomplete. Last words '{', '.join(last_three_words)}' not found near end of annotation"
return True, "Annotation appears complete"
def annotate_transcript(transcript_content, age, gender, slp_notes):
"""First step: Annotate transcript with linguistic markers"""
if not transcript_content or len(transcript_content.strip()) < 50:
return "Error: Please provide a longer transcript for annotation."
# Add SLP notes to the prompt if provided
notes_section = ""
if slp_notes and slp_notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{slp_notes.strip()}
"""
annotation_prompt = f"""
You are a speech-language pathologist preparing a transcript for detailed analysis. Your task is to ANNOTATE the ENTIRE transcript with linguistic markers at a WORD-BY-WORD level.
ORIGINAL TRANSCRIPT:
{transcript_content}{notes_section}
CRITICAL REQUIREMENT: You MUST annotate the COMPLETE transcript. Do NOT provide partial annotations or stop mid-sentence. Complete the ENTIRE transcript annotation in one response.
DETAILED ANNOTATION INSTRUCTIONS:
Annotate by adding markers in brackets IMMEDIATELY after each relevant word or phrase:
FLUENCY MARKERS:
- [FILLER] after: um[FILLER], uh[FILLER], like[FILLER], you know[FILLER], well[FILLER], so[FILLER]
- [FALSE_START] after incomplete words: "I was go-[FALSE_START] going"
- [REPETITION] after repeated words: "I I[REPETITION] went"
- [REVISION] after self-corrections: "I went to the-[REVISION] I mean"
- [PAUSE] for hesitations: "I was...[PAUSE] thinking"
WORD RETRIEVAL MARKERS:
- [CIRCUMLOCUTION] after roundabout descriptions: "that thing you write with[CIRCUMLOCUTION]"
- [INCOMPLETE] after abandoned thoughts: "I was thinking about the...[INCOMPLETE]"
- [GENERIC] after vague terms: thing[GENERIC], stuff[GENERIC], whatsit[GENERIC]
- [WORD_SEARCH] after searching: "the... um...[WORD_SEARCH] car"
GRAMMATICAL MARKERS:
- [GRAM_ERROR] after mistakes: "I goed[GRAM_ERROR]", "He don't[GRAM_ERROR]"
- [SYNTAX_ERROR] after word order problems: "Yesterday I to store went[SYNTAX_ERROR]"
- [MORPH_ERROR] after morphological errors: "runned[MORPH_ERROR]", "childs[MORPH_ERROR]"
- [RUN_ON] at end of run-on sentences
VOCABULARY MARKERS:
- [SIMPLE_VOCAB] after basic words: go[SIMPLE_VOCAB], big[SIMPLE_VOCAB], good[SIMPLE_VOCAB]
- [COMPLEX_VOCAB] after sophisticated words: magnificent[COMPLEX_VOCAB], elaborate[COMPLEX_VOCAB]
- [SEMANTIC_ERROR] after wrong word choices: "drove my bicycle[SEMANTIC_ERROR]"
PRAGMATIC MARKERS:
- [TOPIC_SHIFT] after topic changes: "Anyway, about cats[TOPIC_SHIFT]"
- [TANGENT] after going off-topic: "Speaking of dogs, my vacation[TANGENT]"
- [INAPPROPRIATE] after inappropriate content
- [COHERENCE_BREAK] after illogical statements
SENTENCE COMPLEXITY MARKERS:
- [SIMPLE_SENT] after simple sentences: "I went home.[SIMPLE_SENT]"
- [COMPLEX_SENT] after complex sentences: "When I got home, I made dinner.[COMPLEX_SENT]"
- [COMPOUND_SENT] after compound sentences: "I went home, and made dinner.[COMPOUND_SENT]"
- [FIGURATIVE] after metaphors/idioms: "raining cats and dogs[FIGURATIVE]"
ADDITIONAL MARKERS:
- [PRONOUN_REF] after unclear pronouns: "He told him that he[PRONOUN_REF] was wrong"
- [MAZING] after confusing constructions
- [PERSEVERATION] after repetitive patterns
MANDATORY REQUIREMENTS:
1. Do NOT stop until the entire transcript is complete
2. Keep ALL original text intact
3. Mark overlapping features when applicable
4. Be consistent throughout
5. Complete the annotation in ONE response - no partial outputs allowed
PROVIDE THE COMPLETE ANNOTATED TRANSCRIPT - EVERY WORD MUST BE PROCESSED.
"""
# Get initial annotation
annotated_result = call_claude_api(annotation_prompt)
# Check if annotation is complete
is_complete, validation_message = check_annotation_completeness(transcript_content, annotated_result)
if not is_complete:
logger.warning(f"Annotation incomplete: {validation_message}")
# Try once more with stronger emphasis on completion
retry_prompt = f"""
CRITICAL: The previous annotation was INCOMPLETE. You MUST complete the ENTIRE transcript.
{validation_message}
ORIGINAL TRANSCRIPT (COMPLETE THIS ENTIRELY):
{transcript_content}{notes_section}
MANDATORY REQUIREMENT: Annotate EVERY SINGLE WORD from start to finish. Do not stop until you reach the very last word of the transcript.
{annotation_prompt.split('DETAILED ANNOTATION INSTRUCTIONS:')[1]}
VERIFY: The last words of the original transcript are: {' '.join(transcript_content.strip().split()[-3:])}
ENSURE these words appear at the END of your annotated transcript.
"""
retry_result = call_claude_api(retry_prompt)
# Check retry
retry_complete, retry_message = check_annotation_completeness(transcript_content, retry_result)
if retry_complete:
logger.info("Retry successful - annotation now complete")
return retry_result
else:
logger.error(f"Retry failed: {retry_message}")
return f"ANNOTATION INCOMPLETE: {retry_message}\n\nPartial annotation:\n{retry_result}"
logger.info("Annotation completed successfully")
return annotated_result
def analyze_annotated_transcript(annotated_transcript, age, gender, slp_notes):
"""Second step: Analyze the annotated transcript with comprehensive quantification"""
if not annotated_transcript or len(annotated_transcript.strip()) < 50:
return "Error: Please provide an annotated transcript for analysis."
# Add SLP notes to the prompt if provided
notes_section = ""
if slp_notes and slp_notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{slp_notes.strip()}
"""
analysis_prompt = f"""
You are a speech-language pathologist conducting a comprehensive analysis of an annotated speech sample. Provide objective data analysis without clinical interpretations.
ANNOTATED TRANSCRIPT:
{annotated_transcript}{notes_section}
INSTRUCTIONS: Complete ALL 8 sections below. Use simple formatting with NO BOLDING (no ** or asterisks), NO hashtags (###), and minimal markdown. Focus on objective data only. Count all markers precisely and provide specific examples. Write section headers as plain text followed by a colon. DO NOT include age/gender comparisons, clinical interpretations, severity assessments, or treatment recommendations.
COMPREHENSIVE SPEECH SAMPLE ANALYSIS
1. SPEECH FACTORS
A. Fluency Issues (count each marker type precisely):
- Filler words ([FILLER]): Count all instances, calculate rate per 100 words
* List each type: "um," "uh," "like," "you know," etc.
* Provide specific examples with context
* Calculate percentage of total words
- False starts ([FALSE_START]): Count and categorize
* Word-level false starts: "I was go- going"
* Phrase-level false starts: "My bike is- I mean my bike looks"
* Provide exact quotes from transcript
- Repetitions ([REPETITION]): Count and categorize by type
* Word repetitions: "I I went"
* Phrase repetitions: "to the store to the store"
* Sound repetitions: "b-b-bike"
- Revisions ([REVISION]): Count self-corrections and analyze patterns
* Grammatical revisions: "I goed- I went"
* Lexical revisions: "big- huge dog"
* Semantic revisions: "car- I mean bike"
- Pauses ([PAUSE]): Count hesitation markers and silent pauses
- Total disfluency rate: Calculate combined rate per 100 words
B. Word Retrieval Issues (detailed analysis):
- Circumlocutions ([CIRCUMLOCUTION]): Count and analyze strategies
* Functional descriptions: "the thing you write with"
* Category + description: "that type of fish in the salad"
* Provide exact quotes and analyze effectiveness
- Incomplete thoughts ([INCOMPLETE]): Count abandoned utterances
* Analyze patterns: topic-related, complexity-related, retrieval-related
- Generic terms ([GENERIC]): Count vague language
* "thing," "stuff," "something," "whatsit"
* Calculate specificity ratio
- Word searches ([WORD_SEARCH]): Count explicit retrieval attempts
* "What do you call it," "I can't think of the word"
- Overall efficiency: Calculate success rate of retrieval attempts
C. Grammatical Errors (comprehensive breakdown):
- Grammatical errors ([GRAM_ERROR]): Count by subcategory
* Subject-verb agreement: "He don't like it"
* Verb tense errors: "Yesterday I go to store"
* Pronoun errors: "Me and him went"
* Article errors: "I saw a elephant"
- Syntax errors ([SYNTAX_ERROR]): Count word order problems
- Morphological errors ([MORPH_ERROR]): Count and categorize
* Plural errors: "childs," "foots"
* Past tense errors: "runned," "catched"
* Comparative errors: "more better"
- Run-on sentences ([RUN_ON]): Count and assess boundary awareness
- Calculate grammatical accuracy rate
2. LANGUAGE SKILLS ASSESSMENT
A. Vocabulary Analysis (detailed breakdown):
- Simple vocabulary ([SIMPLE_VOCAB]): Count and categorize
* High-frequency words: "go," "big," "good"
* Basic descriptors: "nice," "fun," "cool"
* Calculate percentage of total vocabulary
- Complex vocabulary ([COMPLEX_VOCAB]): Count and analyze
* Academic vocabulary: "magnificent," "elaborate"
* Technical terms: "carburetor," "photosynthesis"
* Low-frequency words: "churrasco," "anchovies"
- Vocabulary sophistication ratio: Complex/simple vocabulary
- Type-token ratio: Unique words/total words
- Semantic appropriateness: Analyze precision and context fit
- Word frequency analysis: Identify most common words used
B. Grammar and Morphology (systematic analysis):
- Morphological complexity assessment
- Derivational morpheme use: prefixes, suffixes
- Inflectional morphology: plurals, tense, agreement
- Compound word formation
- Error pattern analysis by morpheme type
3. COMPLEX SENTENCE ANALYSIS
A. Sentence Structure Distribution:
- Simple sentences ([SIMPLE_SENT]): Count and calculate percentage
* Subject + predicate: "I went home"
* Analyze average length and complexity
- Complex sentences ([COMPLEX_SENT]): Count subordination patterns
* Adverbial clauses: "When I got home, I ate dinner"
* Relative clauses: "The bike that I rode was red"
* Noun clauses: "I know that he likes pizza"
- Compound sentences ([COMPOUND_SENT]): Count coordination patterns
* Coordinating conjunctions: "and," "but," "or," "so"
* Analyze balance and appropriateness
B. Syntactic Complexity Measures:
- Mean Length of Utterance (MLU): Words and morphemes
- Clauses per utterance ratio
- Subordination index
- Coordination index
4. FIGURATIVE LANGUAGE ANALYSIS
A. Non-literal Language Use:
- Figurative expressions ([FIGURATIVE]): Count and analyze
* Metaphors: "Time is money"
* Similes: "Fast as lightning"
* Idioms: "Raining cats and dogs"
- Appropriateness assessment: Context only
- Comprehension vs. production abilities
- Abstract language development indicators
5. PRAGMATIC LANGUAGE ASSESSMENT
A. Discourse Management:
- Topic management ([TOPIC_SHIFT]): Count and assess appropriateness
* Smooth transitions vs. abrupt shifts
* Topic maintenance duration
* Elaboration and detail provision
- Tangential speech ([TANGENT]): Count off-topic instances
- Discourse coherence ([COHERENCE_BREAK]): Analyze logical flow
- Narrative structure and organization
B. Referential Communication:
- Referential clarity ([PRONOUN_REF]): Count unclear references
* Ambiguous pronouns: "He told him that he was wrong"
* Missing referents: "It was really good" (unclear antecedent)
- Demonstrative use: "this," "that," "these," "those"
- Overall conversational competence assessment
6. VOCABULARY AND SEMANTIC ANALYSIS
A. Semantic Accuracy and Precision:
- Semantic errors ([SEMANTIC_ERROR]): Count inappropriate word choices
* Word substitutions: "I drove my bicycle"
* Category errors: "I petted the bird" (for touched)
- Word association patterns and semantic relationships
- Semantic categories: Analyze breadth and organization
- Precision of word choice: Specific vs. general terms
B. Lexical Diversity and Sophistication:
- Vocabulary breadth: Range of semantic categories
- Vocabulary depth: Precision and nuance within categories
- Academic vs. conversational vocabulary ratio
- Vocabulary development patterns observed
7. NLP-DERIVED LINGUISTIC FEATURES (use bullet lists, NO tables)
A. Lexical Diversity Measures (provide exact calculations as bullet points):
- Type-Token Ratio (TTR): Unique words divided by total words
* Calculate: [unique words] / [total words] = [ratio]
* Interpretation: Higher ratios indicate greater lexical diversity
- Moving Average Type-Token Ratio (MATTR): Average TTR across text segments
* Calculate and interpret stability of lexical diversity
- Measure of Textual Lexical Diversity (MTLD): Length of text segments maintaining TTR threshold
* Higher values indicate sustained lexical diversity
* Provide exact MTLD score and interpretation
- Hypergeometric Distribution D (HDD): Probability-based diversity measure
* Controls for text length effects
* Provide HDD score
B. Word Frequency Analysis (as bullet list, not table):
- Most frequent words used: List top 10 as "word (count)" format
- High-frequency vs. low-frequency word distribution
- Function words vs. content words ratio
- Repetitive word patterns observed
C. Linguistic Complexity Indicators (bullet format):
- Average word length in syllables
- Syllable complexity patterns
- Morphological complexity index
- Syntactic complexity derived from automated parsing
8. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS
A. Morphological Patterns:
- Derivational morphology: Prefixes and suffixes
- Inflectional morphology: Tense, number, case markers
- Morphological awareness indicators
- Error patterns observed
B. Phonological Considerations:
- Sound pattern analysis (if evident in transcript)
- Syllable structure complexity
- Phonological awareness indicators
9. COGNITIVE-LINGUISTIC FACTORS
A. Working Memory Indicators:
- Sentence length and complexity management
- Information retention across utterances
- Complex information processing evidence
B. Processing Speed and Efficiency:
- Word-finding speed and accuracy
- Response latency patterns
- Processing load indicators
C. Executive Function Evidence:
- Self-monitoring and error correction
- Planning and organization in discourse
CRITICAL REQUIREMENTS:
1. Complete ALL 8 sections - do not stop early
2. Provide exact counts for all markers with specific examples
3. Calculate all percentages and rates with formulas shown
4. Include direct quotes from transcript for examples
5. Focus on objective data only - NO clinical interpretations or age/gender comparisons
6. NO treatment recommendations or clinical implications
7. If response is incomplete, end with <CONTINUE>
8. FORMATTING: Use NO asterisks (**), NO hashtags (###), NO bolding - plain text only
"""
return call_claude_api_with_continuation(analysis_prompt)
def calculate_linguistic_metrics(transcript_text):
"""Calculate comprehensive linguistic metrics from transcript"""
import re
import numpy as np
if not transcript_text or not transcript_text.strip():
return {}
# Clean text and extract words
cleaned_text = re.sub(r'\[.*?\]', '', transcript_text) # Remove annotation markers
sentences = re.split(r'[.!?]+', cleaned_text)
sentences = [s.strip() for s in sentences if s.strip()]
# Extract all words
all_words = []
for sentence in sentences:
words = re.findall(r'\b\w+\b', sentence.lower())
all_words.extend(words)
if not all_words:
return {}
# Basic counts
total_words = len(all_words)
total_sentences = len(sentences)
unique_words = len(set(all_words))
# Type-Token Ratio
ttr = unique_words / total_words if total_words > 0 else 0
# Mean Length of Utterance (MLU)
mlu_words = total_words / total_sentences if total_sentences > 0 else 0
# Word frequency analysis
word_freq = {}
for word in all_words:
word_freq[word] = word_freq.get(word, 0) + 1
# Sort by frequency
sorted_word_freq = dict(sorted(word_freq.items(), key=lambda x: x[1], reverse=True))
# Sentence length statistics
sentence_lengths = []
for sentence in sentences:
words_in_sentence = len(re.findall(r'\b\w+\b', sentence))
sentence_lengths.append(words_in_sentence)
avg_sentence_length = np.mean(sentence_lengths) if sentence_lengths else 0
std_sentence_length = np.std(sentence_lengths) if sentence_lengths else 0
# Vocabulary sophistication (words > 6 characters as proxy for complex vocabulary)
complex_words = [word for word in all_words if len(word) > 6]
vocabulary_sophistication = len(complex_words) / total_words if total_words > 0 else 0
# Calculate morpheme count (approximate)
morpheme_count = 0
for word in all_words:
# Basic morpheme counting (word + common suffixes)
morpheme_count += 1
if word.endswith(('s', 'ed', 'ing', 'er', 'est', 'ly')):
morpheme_count += 1
if word.endswith(('tion', 'sion', 'ness', 'ment', 'able', 'ible')):
morpheme_count += 1
mlu_morphemes = morpheme_count / total_sentences if total_sentences > 0 else 0
return {
'total_words': total_words,
'total_sentences': total_sentences,
'unique_words': unique_words,
'type_token_ratio': round(ttr, 3),
'mlu_words': round(mlu_words, 2),
'mlu_morphemes': round(mlu_morphemes, 2),
'avg_sentence_length': round(avg_sentence_length, 2),
'sentence_length_std': round(std_sentence_length, 2),
'vocabulary_sophistication': round(vocabulary_sophistication, 3),
'word_frequency': dict(list(sorted_word_freq.items())[:20]), # Top 20 most frequent
'sentence_lengths': sentence_lengths,
'complex_word_count': len(complex_words),
'morpheme_count': morpheme_count,
'tokenized_words': all_words, # Add for lexical diversity analysis
'cleaned_text': cleaned_text # Add for lexical diversity analysis
}
def calculate_advanced_lexical_diversity(transcript_text):
"""Calculate advanced lexical diversity measures using lexical-diversity library"""
import re
try:
from lexical_diversity import lex_div as ld
lexdiv_available = True
except ImportError:
lexdiv_available = False
if not lexdiv_available:
return {
'library_available': False,
'error': 'lexical-diversity library not installed. Install with: pip install lexical-diversity'
}
if not transcript_text or not transcript_text.strip():
return {'library_available': True, 'error': 'No text provided'}
# Clean text and prepare for lexical diversity analysis
cleaned_text = re.sub(r'\[.*?\]', '', transcript_text) # Remove annotation markers
try:
# Tokenize using lexical-diversity
tokens = ld.tokenize(cleaned_text)
if len(tokens) < 10: # Need minimum tokens for meaningful analysis
return {
'library_available': True,
'error': f'Insufficient tokens for analysis (need ≥10, got {len(tokens)})'
}
# Calculate various lexical diversity measures
diversity_measures = {}
# Basic TTR (included for comparison, but noted as unreliable)
diversity_measures['simple_ttr'] = round(ld.ttr(tokens), 4)
# Recommended measures
try:
diversity_measures['root_ttr'] = round(ld.root_ttr(tokens), 4)
except:
diversity_measures['root_ttr'] = None
try:
diversity_measures['log_ttr'] = round(ld.log_ttr(tokens), 4)
except:
diversity_measures['log_ttr'] = None
try:
diversity_measures['maas_ttr'] = round(ld.maas_ttr(tokens), 4)
except:
diversity_measures['maas_ttr'] = None
# MSTTR (Mean Segmental TTR) - only if enough tokens
if len(tokens) >= 50:
try:
diversity_measures['msttr_50'] = round(ld.msttr(tokens, window_length=50), 4)
except:
diversity_measures['msttr_50'] = None
if len(tokens) >= 25:
try:
diversity_measures['msttr_25'] = round(ld.msttr(tokens, window_length=25), 4)
except:
diversity_measures['msttr_25'] = None
# MATTR (Moving Average TTR) - only if enough tokens
if len(tokens) >= 50:
try:
diversity_measures['mattr_50'] = round(ld.mattr(tokens, window_length=50), 4)
except:
diversity_measures['mattr_50'] = None
if len(tokens) >= 25:
try:
diversity_measures['mattr_25'] = round(ld.mattr(tokens, window_length=25), 4)
except:
diversity_measures['mattr_25'] = None
# HDD (Hypergeometric Distribution D)
try:
diversity_measures['hdd'] = round(ld.hdd(tokens), 4)
except:
diversity_measures['hdd'] = None
# MTLD (Measure of Textual Lexical Diversity) - only if enough tokens
if len(tokens) >= 50:
try:
diversity_measures['mtld'] = round(ld.mtld(tokens), 4)
except:
diversity_measures['mtld'] = None
try:
diversity_measures['mtld_ma_wrap'] = round(ld.mtld_ma_wrap(tokens), 4)
except:
diversity_measures['mtld_ma_wrap'] = None
try:
diversity_measures['mtld_ma_bid'] = round(ld.mtld_ma_bid(tokens), 4)
except:
diversity_measures['mtld_ma_bid'] = None
return {
'library_available': True,
'token_count': len(tokens),
'diversity_measures': diversity_measures,
'tokens': tokens[:50] # First 50 tokens for verification
}
except Exception as e:
return {
'library_available': True,
'error': f'Error calculating lexical diversity: {str(e)}'
}
def analyze_annotation_markers(annotated_transcript):
"""Analyze and count all annotation markers in the transcript with detailed word-level analysis"""
import re
if not annotated_transcript:
return {}
# Define all marker types
marker_types = {
'FILLER': r'\[FILLER\]',
'FALSE_START': r'\[FALSE_START\]',
'REPETITION': r'\[REPETITION\]',
'REVISION': r'\[REVISION\]',
'PAUSE': r'\[PAUSE\]',
'CIRCUMLOCUTION': r'\[CIRCUMLOCUTION\]',
'INCOMPLETE': r'\[INCOMPLETE\]',
'GENERIC': r'\[GENERIC\]',
'WORD_SEARCH': r'\[WORD_SEARCH\]',
'GRAM_ERROR': r'\[GRAM_ERROR\]',
'SYNTAX_ERROR': r'\[SYNTAX_ERROR\]',
'MORPH_ERROR': r'\[MORPH_ERROR\]',
'RUN_ON': r'\[RUN_ON\]',
'SIMPLE_VOCAB': r'\[SIMPLE_VOCAB\]',
'COMPLEX_VOCAB': r'\[COMPLEX_VOCAB\]',
'SEMANTIC_ERROR': r'\[SEMANTIC_ERROR\]',
'TOPIC_SHIFT': r'\[TOPIC_SHIFT\]',
'TANGENT': r'\[TANGENT\]',
'INAPPROPRIATE': r'\[INAPPROPRIATE\]',
'COHERENCE_BREAK': r'\[COHERENCE_BREAK\]',
'SIMPLE_SENT': r'\[SIMPLE_SENT\]',
'COMPLEX_SENT': r'\[COMPLEX_SENT\]',
'COMPOUND_SENT': r'\[COMPOUND_SENT\]',
'FIGURATIVE': r'\[FIGURATIVE\]',
'PRONOUN_REF': r'\[PRONOUN_REF\]',
'MAZING': r'\[MAZING\]',
'PERSEVERATION': r'\[PERSEVERATION\]'
}
# Count each marker type and extract the actual words
marker_counts = {}
marker_examples = {}
marker_words = {}
for marker_name, pattern in marker_types.items():
matches = re.findall(pattern, annotated_transcript)
marker_counts[marker_name] = len(matches)
# Find examples with context and extract the actual words
examples = []
words = []
# Find all instances of word[MARKER] pattern
word_pattern = r'(\w+)' + pattern
word_matches = re.finditer(word_pattern, annotated_transcript)
for match in word_matches:
word = match.group(1)
words.append(word)
# Get context around the match
start = max(0, match.start() - 30)
end = min(len(annotated_transcript), match.end() + 30)
context = annotated_transcript[start:end].strip()
examples.append(f'"{word}" in context: {context}')
marker_examples[marker_name] = examples[:10] # Keep first 10 examples
marker_words[marker_name] = words
# Calculate totals by category
fluency_total = sum([marker_counts.get(m, 0) for m in ['FILLER', 'FALSE_START', 'REPETITION', 'REVISION', 'PAUSE']])
grammar_total = sum([marker_counts.get(m, 0) for m in ['GRAM_ERROR', 'SYNTAX_ERROR', 'MORPH_ERROR', 'RUN_ON']])
vocab_simple = marker_counts.get('SIMPLE_VOCAB', 0)
vocab_complex = marker_counts.get('COMPLEX_VOCAB', 0)
return {
'marker_counts': marker_counts,
'marker_examples': marker_examples,
'marker_words': marker_words,
'category_totals': {
'fluency_issues': fluency_total,
'grammar_errors': grammar_total,
'simple_vocabulary': vocab_simple,
'complex_vocabulary': vocab_complex,
'vocab_sophistication_ratio': vocab_complex / (vocab_simple + vocab_complex) if (vocab_simple + vocab_complex) > 0 else 0
}
}
def generate_comprehensive_analysis_report(annotated_transcript, original_transcript):
"""Generate the most comprehensive analysis combining manual counts, lexical diversity, and linguistic metrics"""
import re
if not annotated_transcript:
return "No annotated transcript provided."
# Get all three types of analysis
linguistic_metrics = calculate_linguistic_metrics(original_transcript)
marker_analysis = analyze_annotation_markers(annotated_transcript)
lexical_diversity = calculate_advanced_lexical_diversity(original_transcript)
# Calculate rates per 100 words
total_words = linguistic_metrics.get('total_words', 0)
report_lines = []
report_lines.append("=" * 100)
report_lines.append("COMPREHENSIVE SPEECH ANALYSIS REPORT")
report_lines.append("Combining Manual Counts + Advanced Lexical Diversity + Linguistic Metrics")
report_lines.append("=" * 100)
report_lines.append("")
# SECTION 1: BASIC STATISTICS
report_lines.append("1. BASIC STATISTICS:")
report_lines.append(f" • Total words: {total_words}")
report_lines.append(f" • Total sentences: {linguistic_metrics.get('total_sentences', 0)}")
report_lines.append(f" • Unique words: {linguistic_metrics.get('unique_words', 0)}")
report_lines.append(f" • MLU (words): {linguistic_metrics.get('mlu_words', 0):.2f}")
report_lines.append(f" • MLU (morphemes): {linguistic_metrics.get('mlu_morphemes', 0):.2f}")
report_lines.append(f" • Average sentence length: {linguistic_metrics.get('avg_sentence_length', 0):.2f}")
report_lines.append("")
# SECTION 2: ADVANCED LEXICAL DIVERSITY MEASURES
report_lines.append("2. ADVANCED LEXICAL DIVERSITY MEASURES:")
if lexical_diversity.get('library_available', False) and 'diversity_measures' in lexical_diversity:
measures = lexical_diversity['diversity_measures']
report_lines.append(f" • Token count for analysis: {lexical_diversity.get('token_count', 0)}")
report_lines.append("")
report_lines.append(" RECOMMENDED MEASURES:")
if measures.get('root_ttr') is not None:
report_lines.append(f" • Root TTR: {measures['root_ttr']:.4f}")
if measures.get('log_ttr') is not None:
report_lines.append(f" • Log TTR: {measures['log_ttr']:.4f}")
if measures.get('maas_ttr') is not None:
report_lines.append(f" • Maas TTR: {measures['maas_ttr']:.4f}")
if measures.get('hdd') is not None:
report_lines.append(f" • HDD (Hypergeometric Distribution D): {measures['hdd']:.4f}")
report_lines.append("")
report_lines.append(" MOVING WINDOW MEASURES:")
if measures.get('msttr_25') is not None:
report_lines.append(f" • MSTTR (25-word window): {measures['msttr_25']:.4f}")
if measures.get('msttr_50') is not None:
report_lines.append(f" • MSTTR (50-word window): {measures['msttr_50']:.4f}")
if measures.get('mattr_25') is not None:
report_lines.append(f" • MATTR (25-word window): {measures['mattr_25']:.4f}")
if measures.get('mattr_50') is not None:
report_lines.append(f" • MATTR (50-word window): {measures['mattr_50']:.4f}")
report_lines.append("")
report_lines.append(" MTLD MEASURES:")
if measures.get('mtld') is not None:
report_lines.append(f" • MTLD: {measures['mtld']:.4f}")
if measures.get('mtld_ma_wrap') is not None:
report_lines.append(f" • MTLD (moving average, wrap): {measures['mtld_ma_wrap']:.4f}")
if measures.get('mtld_ma_bid') is not None:
report_lines.append(f" • MTLD (moving average, bidirectional): {measures['mtld_ma_bid']:.4f}")
report_lines.append("")
report_lines.append(" COMPARISON MEASURE:")
report_lines.append(f" • Simple TTR (not recommended): {measures.get('simple_ttr', 0):.4f}")
else:
report_lines.append(" Advanced lexical diversity measures not available")
if 'error' in lexical_diversity:
report_lines.append(f" Error: {lexical_diversity['error']}")
report_lines.append("")
# SECTION 3: MANUAL ANNOTATION COUNTS
report_lines.append("3. MANUAL ANNOTATION COUNTS:")
marker_counts = marker_analysis['marker_counts']
marker_words = marker_analysis['marker_words']
# Group markers by category for organized reporting
categories = {
'FLUENCY MARKERS': ['FILLER', 'FALSE_START', 'REPETITION', 'REVISION', 'PAUSE'],
'WORD RETRIEVAL MARKERS': ['CIRCUMLOCUTION', 'INCOMPLETE', 'GENERIC', 'WORD_SEARCH'],
'GRAMMAR MARKERS': ['GRAM_ERROR', 'SYNTAX_ERROR', 'MORPH_ERROR', 'RUN_ON'],
'VOCABULARY MARKERS': ['SIMPLE_VOCAB', 'COMPLEX_VOCAB', 'SEMANTIC_ERROR'],
'PRAGMATIC MARKERS': ['TOPIC_SHIFT', 'TANGENT', 'INAPPROPRIATE', 'COHERENCE_BREAK', 'PRONOUN_REF'],
'SENTENCE COMPLEXITY MARKERS': ['SIMPLE_SENT', 'COMPLEX_SENT', 'COMPOUND_SENT', 'FIGURATIVE'],
'OTHER MARKERS': ['MAZING', 'PERSEVERATION']
}
for category, markers in categories.items():
category_total = sum(marker_counts.get(marker, 0) for marker in markers)
if category_total > 0:
report_lines.append(f" {category}:")
for marker in markers:
count = marker_counts.get(marker, 0)
if count > 0:
rate = (count / total_words * 100) if total_words > 0 else 0
words_list = marker_words.get(marker, [])
report_lines.append(f" • {marker}: {count} instances ({rate:.2f} per 100 words)")
if words_list:
# Count frequency of each word
word_freq = {}
for word in words_list:
word_freq[word] = word_freq.get(word, 0) + 1
# Sort by frequency
sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)
word_summary = []
for word, freq in sorted_words[:8]: # Top 8 most frequent
if freq > 1:
word_summary.append(f'"{word}" ({freq}x)')
else:
word_summary.append(f'"{word}"')
report_lines.append(f" Words: {', '.join(word_summary)}")
report_lines.append(f" CATEGORY TOTAL: {category_total} instances")
report_lines.append("")
# SECTION 4: SUMMARY STATISTICS
report_lines.append("4. SUMMARY STATISTICS:")
category_totals = marker_analysis['category_totals']
fluency_total = category_totals['fluency_issues']
grammar_total = category_totals['grammar_errors']
simple_vocab = category_totals['simple_vocabulary']
complex_vocab = category_totals['complex_vocabulary']
if total_words > 0:
report_lines.append(f" • Total fluency issues: {fluency_total} ({fluency_total/total_words*100:.2f} per 100 words)")
report_lines.append(f" • Total grammar errors: {grammar_total} ({grammar_total/total_words*100:.2f} per 100 words)")
report_lines.append(f" • Simple vocabulary: {simple_vocab} ({simple_vocab/total_words*100:.2f} per 100 words)")
report_lines.append(f" • Complex vocabulary: {complex_vocab} ({complex_vocab/total_words*100:.2f} per 100 words)")
if simple_vocab + complex_vocab > 0:
vocab_ratio = complex_vocab / (simple_vocab + complex_vocab)
report_lines.append(f" • Vocabulary sophistication ratio: {vocab_ratio:.3f}")
# SECTION 5: WORD FREQUENCY ANALYSIS
word_freq = linguistic_metrics.get('word_frequency', {})
if word_freq:
report_lines.append("")
report_lines.append("5. MOST FREQUENT WORDS:")
for i, (word, freq) in enumerate(list(word_freq.items())[:15], 1):
percentage = (freq / total_words * 100) if total_words > 0 else 0
report_lines.append(f" {i:2d}. '{word}': {freq} times ({percentage:.1f}%)")
report_lines.append("")
report_lines.append("=" * 100)
report_lines.append("END OF COMPREHENSIVE ANALYSIS REPORT")
report_lines.append("=" * 100)
return '\n'.join(report_lines)
def generate_manual_count_report(annotated_transcript):
"""Generate a basic manual count report (legacy function for compatibility)"""
return generate_comprehensive_analysis_report(annotated_transcript, annotated_transcript)
def process_file(file):
"""Process uploaded transcript file"""
if file is None:
return "Please upload a file first."
try:
with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
if not content.strip():
return "File appears to be empty."
return content
except Exception as e:
return f"Error reading file: {str(e)}"
def call_claude_api_with_continuation(prompt):
"""Call Claude API with smart continuation system - unlimited continuations until complete"""
if not ANTHROPIC_API_KEY:
return "Error: Claude API key not configured. Please set ANTHROPIC_API_KEY environment variable."
print("Starting comprehensive 13-section analysis...")
print("This may take 3-5 minutes for complex analyses...")
# Define all required sections
required_sections = [
"1. SPEECH FACTORS",
"2. LANGUAGE SKILLS ASSESSMENT",
"3. COMPLEX SENTENCE ANALYSIS",
"4. FIGURATIVE LANGUAGE ANALYSIS",
"5. PRAGMATIC LANGUAGE ASSESSMENT",
"6. VOCABULARY AND SEMANTIC ANALYSIS",
"7. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS",
"8. QUANTITATIVE METRICS AND NLP FEATURES"
]
# Safety limits to prevent infinite loops
MAX_CONTINUATIONS = 30 # Increased from 20 to 30 API calls
MAX_TIME_MINUTES = 15 # Increased from 10 to 15 minutes total
MIN_PROGRESS_PER_CALL = 0 # Changed from 1 to 0 to allow more flexibility
try:
all_sections = {} # Store all sections found across all parts
continuation_count = 0
start_time = time.time()
last_section_count = 0 # Track progress between calls
# Add continuation instruction to original prompt
initial_prompt = prompt + "\n\nCRITICAL INSTRUCTIONS: You MUST complete ALL 13 sections of the analysis. If your response is cut off or incomplete, end with <CONTINUE> to indicate more content is needed. Do not skip any sections. Use the checklist to ensure all sections are completed."
while True: # Unlimited continuations until complete
if continuation_count == 0:
current_prompt = initial_prompt
else:
# For continuations, provide context about what was already covered
missing_sections = [s for s in required_sections if s not in all_sections]
missing_text = "\n".join([f"- {section}" for section in missing_sections])
current_prompt = prompt + f"\n\nCONTINUATION {continuation_count + 1}: The following sections are STILL MISSING and MUST be completed:\n\n{missing_text}\n\nCRITICAL: Provide ONLY these missing sections. Do not repeat any sections that are already complete. Focus exclusively on the missing sections listed above. Complete ALL missing sections in this response."
headers = {
"Content-Type": "application/json",
"x-api-key": ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01"
}
data = {
"model": "claude-sonnet-4-5",
"max_tokens": 4096,
"messages": [
{
"role": "user",
"content": current_prompt
}
]
}
# Retry logic for timeout errors
max_retries = 3
retry_count = 0
response = None
while retry_count < max_retries:
try:
response = requests.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=data,
timeout=180
)
break # Success, exit retry loop
except requests.exceptions.Timeout:
retry_count += 1
if retry_count < max_retries:
print(f"Timeout occurred, retrying ({retry_count}/{max_retries})...")
time.sleep(5) # Wait 5 seconds before retry
else:
print(f"Max retries ({max_retries}) exceeded due to timeouts")
return f"Error: API timeout after {max_retries} attempts. The analysis request is too complex. Try using 'Targeted Analysis' for specific sections."
except Exception as e:
print(f"API call failed: {str(e)}")
return f"Error: {str(e)}"
if response and response.status_code == 200:
response_json = response.json()
response_text = response_json['content'][0]['text']
# Log response for debugging
print(f"\n=== PART {continuation_count + 1} RESPONSE ===")
print(f"Length: {len(response_text)} characters")
print(f"Contains CONTINUE: {'<CONTINUE>' in response_text}")
print(f"First 200 chars: {response_text[:200]}...")
print(f"Last 200 chars: {response_text[-200:]}...")
print("=" * 50)
# Segment this part and add new sections to our collection
part_sections = segment_response_by_sections(response_text)
for section, content in part_sections.items():
if section not in all_sections: # Only add if not already present
all_sections[section] = content
print(f"Added section: {section}")
else:
print(f"Skipped duplicate section: {section}")
# Check completion status
completed_sections = len(all_sections)
missing_sections = [s for s in required_sections if s not in all_sections]
print(f"Completed sections: {completed_sections}/12")
print(f"Missing sections: {missing_sections}")
# Check if response indicates continuation is needed
has_continue_marker = "<CONTINUE>" in response_text
has_missing_sections = len(missing_sections) > 0
# Continuation needed if either marker present OR sections missing
needs_continuation = has_continue_marker or has_missing_sections
print(f"Has <CONTINUE> marker: {has_continue_marker}")
print(f"Has missing sections: {has_missing_sections}")
print(f"Missing sections: {missing_sections}")
print(f"Needs continuation: {needs_continuation}")
print(f"Continuation count: {continuation_count}")
# Safety checks to prevent infinite loops
current_time = time.time()
elapsed_minutes = (current_time - start_time) / 60
current_section_count = len(all_sections)
progress_made = current_section_count - last_section_count
# Check if we're making progress
if continuation_count > 0 and progress_made < MIN_PROGRESS_PER_CALL:
# Only stop if we've made multiple calls with no progress
if continuation_count > 3: # Allow more attempts before giving up
logger.warning(f"No progress made in last call (added {progress_made} sections). Stopping to prevent infinite loop.")
break
else:
logger.info(f"No progress in call {continuation_count}, but continuing to allow more attempts...")
# Check time limit
if elapsed_minutes > MAX_TIME_MINUTES:
logger.warning(f"Time limit exceeded ({elapsed_minutes:.1f} minutes). Stopping to prevent excessive API usage.")
break
# Check continuation limit
if continuation_count >= MAX_CONTINUATIONS:
logger.warning(f"Continuation limit reached ({MAX_CONTINUATIONS} calls). Stopping to prevent excessive API usage.")
break
# Continue if <CONTINUE> is present and safety checks pass
if needs_continuation:
continuation_count += 1
last_section_count = current_section_count
logger.info(f"Continuing analysis (attempt {continuation_count}/{MAX_CONTINUATIONS}, {elapsed_minutes:.1f} minutes elapsed)")
continue
else:
break
else:
logger.error(f"Claude API error: {response.status_code} - {response.text}")
return f"Error: Claude API Error: {response.status_code}"
except Exception as e:
logger.error(f"Error calling Claude API: {str(e)}")
return f"Error: {str(e)}"
# Combine all sections in the correct order
final_response = combine_sections_smartly(all_sections)
# Clean formatting: remove asterisks, hashtags, and fix table formatting
final_response = clean_output_formatting(final_response)
# Log final results
print(f"\n=== FINAL SMART VALIDATION ===")
print(f"Total sections found: {len(all_sections)}")
print(f"All sections present: {len(all_sections) == 13}")
print(f"Missing sections: {[s for s in required_sections if s not in all_sections]}")
print(f"Total time: {(time.time() - start_time) / 60:.1f} minutes")
print(f"Total API calls: {continuation_count + 1}")
print("=" * 50)
# Add completion message
if len(all_sections) == 13:
print("ANALYSIS COMPLETE - All 13 sections generated successfully!")
print("Output has been cleaned (removed asterisks, hashtags, converted tables to lists)")
else:
print(f"ANALYSIS INCOMPLETE - {13 - len(all_sections)} sections missing")
# Add completion indicator with safety info
if continuation_count > 0:
final_response += f"\n\n[Analysis completed in {continuation_count + 1} parts over {(time.time() - start_time) / 60:.1f} minutes]"
# Add warning if incomplete due to safety limits
if len(all_sections) < 13:
missing_sections = [s for s in required_sections if s not in all_sections]
final_response += f"\n\nWARNING: Analysis incomplete due to safety limits. Missing sections: {', '.join(missing_sections)}"
final_response += f"\n\nTIP: Try running the analysis again, or use the 'Targeted Analysis' tab to focus on specific areas."
final_response += f"\nThe 'Quick Questions' tab may also provide faster results for specific areas of interest."
return final_response
def analyze_with_backup(annotated_transcript, original_transcript, age, gender, slp_notes):
"""Analyze annotated transcript with original as backup"""
if not annotated_transcript or len(annotated_transcript.strip()) < 50:
return "Error: Please provide an annotated transcript for analysis."
# Add SLP notes to the prompt if provided
notes_section = ""
if slp_notes and slp_notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{slp_notes.strip()}
"""
# Calculate quantitative metrics
linguistic_metrics = calculate_linguistic_metrics(original_transcript)
marker_analysis = analyze_annotation_markers(annotated_transcript)
# Format metrics for inclusion in prompt
metrics_text = f"""
CALCULATED LINGUISTIC METRICS:
- Total Words: {linguistic_metrics.get('total_words', 0)}
- Total Sentences: {linguistic_metrics.get('total_sentences', 0)}
- Unique Words: {linguistic_metrics.get('unique_words', 0)}
- Type-Token Ratio: {linguistic_metrics.get('type_token_ratio', 0)}
- MLU (Words): {linguistic_metrics.get('mlu_words', 0)}
- MLU (Morphemes): {linguistic_metrics.get('mlu_morphemes', 0)}
- Average Sentence Length: {linguistic_metrics.get('avg_sentence_length', 0)}
- Vocabulary Sophistication: {linguistic_metrics.get('vocabulary_sophistication', 0)}
ANNOTATION MARKER COUNTS:
- Fluency Issues: {marker_analysis.get('category_totals', {}).get('fluency_issues', 0)}
- Grammar Errors: {marker_analysis.get('category_totals', {}).get('grammar_errors', 0)}
- Simple Vocabulary: {marker_analysis.get('category_totals', {}).get('simple_vocabulary', 0)}
- Complex Vocabulary: {marker_analysis.get('category_totals', {}).get('complex_vocabulary', 0)}
- Vocabulary Sophistication Ratio: {marker_analysis.get('category_totals', {}).get('vocab_sophistication_ratio', 0):.3f}
"""
analysis_prompt = f"""
You are a speech-language pathologist conducting a COMPREHENSIVE analysis of a word-by-word annotated speech sample. Use the provided quantitative metrics and count EVERY marker precisely.
Patient: {age}-year-old {gender}
ANNOTATED TRANSCRIPT:
{annotated_transcript}{notes_section}
ORIGINAL TRANSCRIPT (for reference and backup analysis):
{original_transcript}
{metrics_text}
ANALYSIS INSTRUCTIONS:
Using the detailed linguistic markers in the annotated transcript and the calculated metrics above, provide a comprehensive analysis with EXACT counts, percentages, and specific examples. Complete ALL 13 sections below:
COMPREHENSIVE SPEECH SAMPLE ANALYSIS:
1. SPEECH FACTORS (with EXACT counts and specific citations):
A. Fluency Issues:
- Count [FILLER] markers: List each instance and calculate rate per 100 words
- Count [FALSE_START] markers: List examples and analyze patterns
- Count [REPETITION] markers: Categorize by type (word, phrase, sound)
- Count [REVISION] markers: Analyze self-correction patterns
- Count [PAUSE] markers: Assess hesitation frequency
- Calculate total disfluency rate
B. Word Retrieval Issues:
- Count [CIRCUMLOCUTION] markers: List each roundabout description
- Count [INCOMPLETE] markers: Analyze abandoned thought patterns
- Count [GENERIC] markers: Calculate specificity ratio
- Count [WORD_SEARCH] markers: Identify retrieval difficulty areas
C. Grammatical Errors:
- Count [GRAM_ERROR] markers by subcategory (verb tense, subject-verb agreement, etc.)
- Count [SYNTAX_ERROR] markers: Analyze word order problems
- Count [MORPH_ERROR] markers: Categorize morphological mistakes
- Count [RUN_ON] markers: Assess sentence boundary awareness
2. LANGUAGE SKILLS ASSESSMENT (with specific evidence):
A. Lexical/Semantic Skills:
- Use calculated Type-Token Ratio: {linguistic_metrics.get('type_token_ratio', 0)}
- Count [SIMPLE_VOCAB] vs [COMPLEX_VOCAB] markers
- Assess vocabulary sophistication ratio: {marker_analysis.get('category_totals', {}).get('vocab_sophistication_ratio', 0):.3f}
- Count [SEMANTIC_ERROR] markers and analyze patterns
B. Syntactic Skills:
- Count [SIMPLE_SENT], [COMPLEX_SENT], [COMPOUND_SENT] markers
- Calculate sentence complexity ratios
- Assess clause complexity and embedding
C. Supralinguistic Skills:
- Identify cause-effect relationships, inferences, non-literal language
- Assess problem-solving language and metalinguistic awareness
3. COMPLEX SENTENCE ANALYSIS (with exact counts):
A. Coordinating Conjunctions:
- Count and cite EVERY use of: and, but, or, so, yet, for, nor
- Analyze patterns and age-appropriateness
B. Subordinating Conjunctions:
- Count and cite EVERY use of: because, although, while, since, if, when, where, that, which, who
- Analyze clause complexity and embedding depth
C. Sentence Structure Analysis:
- Use calculated MLU: {linguistic_metrics.get('mlu_words', 0)} words, {linguistic_metrics.get('mlu_morphemes', 0)} morphemes
- Calculate complexity ratios
4. FIGURATIVE LANGUAGE ANALYSIS (with exact counts):
A. Similes and Metaphors:
- Count [FIGURATIVE] markers for similes (using "like" or "as")
- Count [FIGURATIVE] markers for metaphors (direct comparisons)
B. Idioms and Non-literal Language:
- Count and analyze idiomatic expressions
- Assess comprehension and appropriate use
5. PRAGMATIC LANGUAGE ASSESSMENT (with specific examples):
A. Discourse Management:
- Count [TOPIC_SHIFT] markers: Assess transition appropriateness
- Count [TANGENT] markers: Analyze tangential speech patterns
- Count [COHERENCE_BREAK] markers: Assess logical flow
B. Referential Communication:
- Count [PRONOUN_REF] markers: Analyze referential clarity
- Assess communicative effectiveness
6. VOCABULARY AND SEMANTIC ANALYSIS (with quantification):
A. Vocabulary Diversity:
- Total words: {linguistic_metrics.get('total_words', 0)}
- Unique words: {linguistic_metrics.get('unique_words', 0)}
- Type-Token Ratio: {linguistic_metrics.get('type_token_ratio', 0)}
- Vocabulary sophistication: {linguistic_metrics.get('vocabulary_sophistication', 0)}
B. Semantic Relationships:
- Analyze word frequency patterns
- Assess semantic precision and relationships
7. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS (with counts):
A. Morphological Markers:
- Count [MORPH_ERROR] markers and categorize
- Analyze morpheme use patterns
- Assess morphological complexity
B. Phonological Patterns:
- Identify speech sound patterns from transcript
- Assess syllable structure complexity
8. COGNITIVE-LINGUISTIC FACTORS (with evidence):
A. Working Memory:
- Assess sentence length complexity using average: {linguistic_metrics.get('avg_sentence_length', 0)} words
- Analyze information retention patterns
B. Processing Efficiency:
- Analyze linguistic complexity and word-finding patterns
- Assess cognitive demands of language structures
C. Executive Function:
- Count self-correction patterns ([REVISION] markers)
- Assess planning and organization in discourse
9. FLUENCY AND RHYTHM ANALYSIS (with quantification):
A. Disfluency Patterns:
- Total fluency issues: {marker_analysis.get('category_totals', {}).get('fluency_issues', 0)}
- Calculate disfluency rate per 100 words
- Analyze impact on communication
B. Language Flow:
- Assess sentence length variability: std = {linguistic_metrics.get('sentence_length_std', 0)}
- Analyze linguistic markers of hesitation
10. QUANTITATIVE METRICS:
- Total words: {linguistic_metrics.get('total_words', 0)}
- Total sentences: {linguistic_metrics.get('total_sentences', 0)}
- MLU (words): {linguistic_metrics.get('mlu_words', 0)}
- MLU (morphemes): {linguistic_metrics.get('mlu_morphemes', 0)}
- Type-Token Ratio: {linguistic_metrics.get('type_token_ratio', 0)}
- Grammar error rate: Calculate from marker counts
- Vocabulary sophistication ratio: {marker_analysis.get('category_totals', {}).get('vocab_sophistication_ratio', 0):.3f}
CRITICAL REQUIREMENTS:
- Use the provided calculated metrics in your analysis
- Provide EXACT counts for every marker type
- Calculate precise percentages and show your work
- Give specific examples from the transcript
- If annotation is incomplete, supplement with analysis of the original transcript
- Complete ALL 8 sections - use <CONTINUE> if needed
- Focus on objective data only - NO clinical interpretations
"""
return call_claude_api_with_continuation(analysis_prompt)
def full_analysis_pipeline(transcript_content, age, gender, slp_notes, progress_callback=None):
"""Complete pipeline: annotate then analyze with progressive updates"""
if not transcript_content or len(transcript_content.strip()) < 50:
return "Error: Please provide a longer transcript for analysis.", ""
# Step 1: Annotate transcript
logger.info("Step 1: Annotating transcript with linguistic markers...")
if progress_callback:
progress_callback("Step 1: Annotating transcript with linguistic markers...")
annotated_transcript = annotate_transcript(transcript_content, age, gender, slp_notes)
if annotated_transcript.startswith("Error"):
return annotated_transcript, ""
# Return annotated transcript immediately
if progress_callback:
progress_callback("Step 1 Complete: Annotation finished! Starting analysis...")
# Check if annotation was incomplete
if annotated_transcript.startswith("ANNOTATION INCOMPLETE"):
logger.warning("Annotation incomplete, proceeding with analysis using original transcript as primary source")
analysis_note = "Note: Annotation was incomplete. Analysis primarily based on original transcript.\n\n"
else:
analysis_note = ""
# Step 2: Analyze annotated transcript with original as backup
logger.info("Step 2: Analyzing annotated transcript...")
if progress_callback:
progress_callback("Step 2: Analyzing annotated transcript (this may take several minutes)...")
analysis_result = analyze_with_backup(annotated_transcript, transcript_content, age, gender, slp_notes)
if progress_callback:
progress_callback("Analysis Complete!")
return annotated_transcript, analysis_note + analysis_result
def progressive_analysis_pipeline(transcript_content, age, gender, slp_notes):
"""Generator function for progressive analysis updates"""
if not transcript_content or len(transcript_content.strip()) < 50:
yield "Error: Please provide a longer transcript for analysis.", "", "Error"
return
# Step 1: Annotate transcript
logger.info("Step 1: Annotating transcript with linguistic markers...")
yield "", "", "Step 1: Annotating transcript with linguistic markers..."
annotated_transcript = annotate_transcript(transcript_content, age, gender, slp_notes)
if annotated_transcript.startswith("Error"):
yield annotated_transcript, "", "Annotation failed"
return
# Return annotated transcript immediately after completion
yield annotated_transcript, "", "Step 1 Complete! Starting analysis..."
# Check if annotation was incomplete
if annotated_transcript.startswith("ANNOTATION INCOMPLETE"):
logger.warning("Annotation incomplete, proceeding with analysis")
analysis_note = "Note: Annotation was incomplete. Analysis primarily based on original transcript.\n\n"
yield annotated_transcript, "", "Annotation incomplete, continuing with analysis..."
else:
analysis_note = ""
# Step 2: Analyze annotated transcript
logger.info("Step 2: Analyzing annotated transcript...")
yield annotated_transcript, "", "Step 2: Analyzing annotated transcript (this may take several minutes)..."
analysis_result = analyze_with_backup(annotated_transcript, transcript_content, age, gender, slp_notes)
# Final result
yield annotated_transcript, analysis_note + analysis_result, "Analysis Complete!"
# Example transcript data
example_transcript = """Well, um, I was thinking about, you know, the thing that happened yesterday. I was go- I mean I was going to the store and, uh, I seen this really big dog. Actually, it was more like a wolf or something. The dog, he was just standing there, and I thought to myself, "That's one magnificent creature." But then, um, I realized I forgot my wallet at home, so I had to turn around and go back. When I got home, my wife she says to me, "Where's the groceries?" And I'm like, "Well, honey, I had to come back because I forgot my thing." She wasn't too happy about that, let me tell you. Anyway, speaking of dogs, did I ever tell you about the time I went fishing? It was raining cats and dogs that day, and I caught three fishes. My brother, he don't like fishing much, but he came with me anyway. We was sitting there for hours, just waiting and waiting. The fish, they wasn't biting at all. But then, all of a sudden, I got a bite! I was so excited, I almost falled into the water. The fish was huge - well, maybe not huge, but pretty big for that lake. We cooked it up real good that night. My wife, she made some of that fancy stuff to go with it. What do you call it... that green thing... oh yeah, asparagus. She's always making these elaborate meals. Sometimes I think she tries too hard, you know? But I appreciate it. Life's been good to us, I guess. We been married for twenty-five years now. Time flies when you're having fun, as they say."""
example_annotated = """Well[FILLER], um[FILLER], I was thinking about, you[SIMPLE_VOCAB] know[FILLER], the thing[GENERIC] that happened yesterday[SIMPLE_VOCAB]. I was go-[FALSE_START] I mean I was going[SIMPLE_VOCAB] to the store[SIMPLE_VOCAB] and, uh[FILLER], I seen[GRAM_ERROR] this really big[SIMPLE_VOCAB] dog[SIMPLE_VOCAB].[SIMPLE_SENT] Actually, it was more like[FILLER] a wolf[SIMPLE_VOCAB] or something[GENERIC].[SIMPLE_SENT] The dog[SIMPLE_VOCAB], he[PRONOUN_REF] was just standing[SIMPLE_VOCAB] there, and I thought to myself, "That's one magnificent[COMPLEX_VOCAB] creature[COMPLEX_VOCAB]."[COMPLEX_SENT] But then, um[FILLER], I realized[COMPLEX_VOCAB] I forgot[SIMPLE_VOCAB] my wallet[SIMPLE_VOCAB] at home[SIMPLE_VOCAB], so I had to turn around and go[SIMPLE_VOCAB] back[SIMPLE_VOCAB].[COMPLEX_SENT] When I got home, my wife[SIMPLE_VOCAB] she[REPETITION] says[SIMPLE_VOCAB] to me, "Where's the groceries[SIMPLE_VOCAB]?"[COMPLEX_SENT] And I'm like[FILLER], "Well[FILLER], honey[SIMPLE_VOCAB], I had to come back because I forgot[SIMPLE_VOCAB] my thing[GENERIC]."[COMPLEX_SENT] She wasn't too happy[SIMPLE_VOCAB] about that, let me tell you.[SIMPLE_SENT] Anyway[TOPIC_SHIFT], speaking of dogs, did I ever tell you about the time I went fishing?[TANGENT][COMPLEX_SENT] It was raining cats and dogs[FIGURATIVE] that day, and I caught[SIMPLE_VOCAB] three fishes[MORPH_ERROR].[COMPOUND_SENT] My brother[SIMPLE_VOCAB], he[PRONOUN_REF] don't[GRAM_ERROR] like fishing[SIMPLE_VOCAB] much, but he came with me anyway[SIMPLE_VOCAB].[COMPLEX_SENT] We was[GRAM_ERROR] sitting[SIMPLE_VOCAB] there for hours[SIMPLE_VOCAB], just waiting[SIMPLE_VOCAB] and waiting[REPETITION].[SIMPLE_SENT] The fish[SIMPLE_VOCAB], they[PRONOUN_REF] wasn't[GRAM_ERROR] biting[SIMPLE_VOCAB] at all.[SIMPLE_SENT] But then, all of a sudden[SIMPLE_VOCAB], I got[SIMPLE_VOCAB] a bite[SIMPLE_VOCAB]![SIMPLE_SENT] I was so excited[SIMPLE_VOCAB], I almost falled[MORPH_ERROR] into the water[SIMPLE_VOCAB].[COMPLEX_SENT] The fish[SIMPLE_VOCAB] was huge[SIMPLE_VOCAB] - well[FILLER], maybe not huge[SIMPLE_VOCAB], but pretty big[SIMPLE_VOCAB] for that lake[SIMPLE_VOCAB].[REVISION][COMPLEX_SENT] We cooked[SIMPLE_VOCAB] it up real good[SIMPLE_VOCAB] that night[SIMPLE_VOCAB].[SIMPLE_SENT] My wife[SIMPLE_VOCAB], she[REPETITION] made some of that fancy[SIMPLE_VOCAB] stuff[GENERIC] to go[SIMPLE_VOCAB] with it.[SIMPLE_SENT] What do you call it... [WORD_SEARCH] that green[SIMPLE_VOCAB] thing[GENERIC]... [PAUSE] oh yeah, asparagus[COMPLEX_VOCAB].[CIRCUMLOCUTION] She's always making[SIMPLE_VOCAB] these elaborate[COMPLEX_VOCAB] meals[SIMPLE_VOCAB].[SIMPLE_SENT] Sometimes I think[SIMPLE_VOCAB] she tries[SIMPLE_VOCAB] too hard[SIMPLE_VOCAB], you know[FILLER]?[COMPLEX_SENT] But I appreciate[COMPLEX_VOCAB] it.[SIMPLE_SENT] Life's been good[SIMPLE_VOCAB] to us, I guess[SIMPLE_VOCAB].[SIMPLE_SENT] We been[GRAM_ERROR] married[SIMPLE_VOCAB] for twenty-five[COMPLEX_VOCAB] years[SIMPLE_VOCAB] now.[SIMPLE_SENT] Time flies when you're having fun[FIGURATIVE], as they say.[COMPLEX_SENT]"""
# Create Gradio interface
with gr.Blocks(title="Speech Analysis", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Speech Analysis Tool with Annotations
This tool performs a two-step comprehensive speech analysis:
1. **Annotation**: Marks linguistic features in the transcript
2. **Analysis**: Counts and analyzes the marked features for detailed assessment
Upload a transcript or paste text below to begin the analysis.
""")
with gr.Tab("Full Analysis Pipeline"):
gr.Markdown("### Complete two-step analysis: annotation followed by comprehensive analysis")
with gr.Row():
with gr.Column(scale=2):
transcript_input = gr.Textbox(
label="Speech Transcript",
placeholder="Paste the speech transcript here...",
lines=10,
max_lines=20
)
file_input = gr.File(
label="Or upload transcript file",
file_types=[".txt", ".doc", ".docx"]
)
with gr.Row():
age_input = gr.Textbox(
label="Age",
placeholder="e.g., 45",
value="45"
)
gender_input = gr.Dropdown(
label="Gender",
choices=["Male", "Female", "Other"],
value="Male"
)
slp_notes_input = gr.Textbox(
label="SLP Clinical Notes (Optional)",
placeholder="Add any relevant clinical observations...",
lines=3
)
example_btn = gr.Button("Load Example Transcript", variant="secondary", size="sm")
# Single main analysis button
ultimate_analysis_btn = gr.Button("Run Complete Speech Analysis", variant="primary", size="lg")
with gr.Column(scale=3):
status_display = gr.Markdown("Ready to analyze transcript")
annotated_output = gr.Textbox(
label="Step 1: Annotated Transcript (Complete = Yes, Incomplete = No)",
lines=15,
max_lines=25,
show_copy_button=True
)
analysis_output = gr.Textbox(
label="Step 2: Comprehensive Analysis",
lines=20,
max_lines=30,
show_copy_button=True
)
with gr.Tab("Annotation Only"):
gr.Markdown("Step 1: Annotate transcript with linguistic markers")
with gr.Row():
with gr.Column():
transcript_input_2 = gr.Textbox(
label="Speech Transcript",
placeholder="Paste the speech transcript here...",
lines=10
)
with gr.Row():
age_input_2 = gr.Textbox(label="Age", value="45")
gender_input_2 = gr.Dropdown(
label="Gender",
choices=["Male", "Female", "Other"],
value="Male"
)
slp_notes_input_2 = gr.Textbox(
label="SLP Clinical Notes (Optional)",
lines=3
)
example_btn_2 = gr.Button("Load Example Transcript", variant="secondary", size="sm")
annotate_btn = gr.Button("Annotate Transcript", variant="secondary")
with gr.Column():
annotation_output = gr.Textbox(
label="Annotated Transcript (Complete = Yes, Incomplete = No)",
lines=20,
show_copy_button=True
)
with gr.Tab("Quick Questions"):
gr.Markdown("Ask specific questions about the transcript")
with gr.Row():
with gr.Column():
transcript_input_4 = gr.Textbox(
label="Speech Transcript",
placeholder="Paste the speech transcript here...",
lines=8
)
question_input = gr.Textbox(
label="Your Question",
placeholder="e.g., How many filler words are used? What grammatical errors are present?",
lines=2
)
with gr.Row():
age_input_4 = gr.Textbox(label="Age", value="45")
gender_input_4 = gr.Dropdown(
label="Gender",
choices=["Male", "Female", "Other"],
value="Male"
)
slp_notes_input_4 = gr.Textbox(
label="SLP Clinical Notes (Optional)",
lines=2
)
# Quick question examples
gr.Markdown("Example Questions:")
with gr.Row():
q1_btn = gr.Button("Count filler words", size="sm", variant="secondary")
q2_btn = gr.Button("Grammar errors?", size="sm", variant="secondary")
q3_btn = gr.Button("Vocabulary level?", size="sm", variant="secondary")
with gr.Row():
q4_btn = gr.Button("Sentence complexity?", size="sm", variant="secondary")
q5_btn = gr.Button("Word finding issues?", size="sm", variant="secondary")
q6_btn = gr.Button("Fluency problems?", size="sm", variant="secondary")
example_btn_4 = gr.Button("Load Example Transcript", variant="secondary", size="sm")
ask_question_btn = gr.Button("Ask Question", variant="primary")
with gr.Column():
question_output = gr.Textbox(
label="Answer",
lines=15,
show_copy_button=True
)
with gr.Tab("Targeted Analysis"):
gr.Markdown("Focus on specific areas of speech and language")
with gr.Row():
with gr.Column():
transcript_input_5 = gr.Textbox(
label="Speech Transcript",
placeholder="Paste the speech transcript here...",
lines=8
)
analysis_area = gr.Dropdown(
label="Analysis Focus",
choices=[
"Fluency and Disfluencies",
"Grammar and Syntax",
"Vocabulary and Semantics",
"Pragmatics and Discourse",
"Sentence Complexity",
"Word Finding and Retrieval"
],
value="Fluency and Disfluencies"
)
with gr.Row():
age_input_5 = gr.Textbox(label="Age", value="45")
gender_input_5 = gr.Dropdown(
label="Gender",
choices=["Male", "Female", "Other"],
value="Male"
)
slp_notes_input_5 = gr.Textbox(
label="SLP Clinical Notes (Optional)",
lines=2
)
example_btn_5 = gr.Button("Load Example Transcript", variant="secondary", size="sm")
targeted_analysis_btn = gr.Button("Run Targeted Analysis", variant="primary")
with gr.Column():
targeted_output = gr.Textbox(
label="Targeted Analysis Results",
lines=15,
show_copy_button=True
)
# Event handlers - now all components are defined
example_btn.click(fn=lambda: example_transcript, outputs=[transcript_input])
example_btn_2.click(fn=lambda: example_transcript, outputs=[transcript_input_2])
example_btn_4.click(fn=lambda: example_transcript, outputs=[transcript_input_4])
example_btn_5.click(fn=lambda: example_transcript, outputs=[transcript_input_5])
# Quick question button handlers
q1_btn.click(fn=lambda: "How many filler words (um, uh, like, you know) are used in this transcript? Provide exact counts and examples.", outputs=[question_input])
q2_btn.click(fn=lambda: "What grammatical errors are present in this transcript? List all errors with specific examples and corrections.", outputs=[question_input])
q3_btn.click(fn=lambda: "What is the vocabulary level and sophistication in this transcript? Analyze word choice and complexity.", outputs=[question_input])
q4_btn.click(fn=lambda: "How complex are the sentences in this transcript? Analyze sentence types and structures used.", outputs=[question_input])
q5_btn.click(fn=lambda: "Are there any word-finding difficulties or retrieval issues? Identify specific examples and patterns.", outputs=[question_input])
q6_btn.click(fn=lambda: "What fluency problems or disfluencies are present? Count and categorize all instances.", outputs=[question_input])
file_input.change(
fn=process_file,
inputs=[file_input],
outputs=[transcript_input]
)
def run_annotation_step(transcript_content, age, gender, slp_notes):
"""Run just the annotation step and return immediately"""
if not transcript_content or len(transcript_content.strip()) < 50:
return "Error: Please provide a longer transcript for annotation.", "Error"
logger.info("Step 1: Annotating transcript with linguistic markers...")
annotated_transcript = annotate_transcript(transcript_content, age, gender, slp_notes)
if annotated_transcript.startswith("Error"):
return annotated_transcript, "Annotation failed"
elif annotated_transcript.startswith("ANNOTATION INCOMPLETE"):
return annotated_transcript, "Annotation incomplete but proceeding"
else:
return annotated_transcript, "Annotation complete! Click 'Run Analysis' to continue."
def run_analysis_step(annotated_transcript, original_transcript, age, gender, slp_notes):
"""Run the analysis step on the annotated transcript"""
if not annotated_transcript or len(annotated_transcript.strip()) < 50:
return "Error: Please provide an annotated transcript for analysis."
logger.info("Step 2: Analyzing annotated transcript...")
# Check if annotation was incomplete
if annotated_transcript.startswith("ANNOTATION INCOMPLETE"):
analysis_note = "Note: Annotation was incomplete. Analysis primarily based on original transcript.\n\n"
else:
analysis_note = ""
analysis_result = analyze_with_backup(annotated_transcript, original_transcript, age, gender, slp_notes)
return analysis_note + analysis_result
def run_manual_count_only(annotated_transcript):
"""Generate only the manual count report without AI analysis"""
if not annotated_transcript or len(annotated_transcript.strip()) < 50:
return "Error: Please provide an annotated transcript for manual counting."
return generate_manual_count_report(annotated_transcript)
def run_verified_analysis(annotated_transcript, original_transcript, age, gender, slp_notes):
"""Run analysis with manual count verification"""
if not annotated_transcript or len(annotated_transcript.strip()) < 50:
return "Error: Please provide an annotated transcript for analysis."
# Generate comprehensive analysis report first
comprehensive_report = generate_comprehensive_analysis_report(annotated_transcript, original_transcript)
# Get all the verified data
marker_analysis = analyze_annotation_markers(annotated_transcript)
linguistic_metrics = calculate_linguistic_metrics(original_transcript)
lexical_diversity = calculate_advanced_lexical_diversity(original_transcript)
# Create a comprehensive verified analysis prompt
verified_prompt = f"""
You are a speech-language pathologist conducting analysis based on COMPREHENSIVE VERIFIED DATA.
Do NOT recount anything - use ONLY the provided verified measurements below.
Patient: {age}-year-old {gender}
COMPREHENSIVE VERIFIED ANALYSIS DATA (DO NOT RECOUNT):
{comprehensive_report}
ANNOTATED TRANSCRIPT (for examples only, do not recount):
{annotated_transcript}...
INSTRUCTIONS:
Use ONLY the verified data provided above. Do NOT count or calculate anything yourself.
Provide a comprehensive clinical interpretation organized into these sections:
1. LEXICAL DIVERSITY DATA:
- Report the advanced lexical diversity measures (MTLD, HDD, MATTR, etc.)
- Provide objective data interpretation only
2. FLUENCY PATTERN DATA:
- Report fluency marker counts and rates
- Provide objective data summary only
3. GRAMMATICAL PATTERN DATA:
- Report grammar error patterns from verified counts
- Provide objective data summary only
4. VOCABULARY AND SEMANTIC ANALYSIS:
- Interpretation of vocabulary sophistication measures
- Word frequency pattern analysis
- Semantic precision assessment
5. PRAGMATIC LANGUAGE EVALUATION:
- Discourse coherence based on verified markers
- Social communication effectiveness
- Conversational competence
6. OVERALL COMMUNICATION PROFILE:
- Integration of all verified measures
- Strengths and areas of need
- Functional communication impact
Focus on OBJECTIVE DATA INTERPRETATION only, not clinical significance.
All measurements are already verified and accurate.
Cite specific examples from the transcript to support your observations.
"""
ai_interpretation = call_claude_api(verified_prompt)
return f"{comprehensive_report}\n\n{'='*100}\nCLINICAL INTERPRETATION BASED ON COMPREHENSIVE VERIFIED DATA\n{'='*100}\n\n{ai_interpretation}"
def run_ultimate_analysis(annotated_transcript, original_transcript, age, gender, slp_notes):
"""Clean comprehensive analysis using verified statistical data"""
if not annotated_transcript or len(annotated_transcript.strip()) < 50:
return "Error: Please provide an annotated transcript for analysis."
# Gather statistical data
linguistic_metrics = calculate_linguistic_metrics(original_transcript)
marker_analysis = analyze_annotation_markers(annotated_transcript)
lexical_diversity = calculate_advanced_lexical_diversity(original_transcript)
# Prepare verified statistics
marker_counts = marker_analysis['marker_counts']
category_totals = marker_analysis['category_totals']
total_words = linguistic_metrics.get('total_words', 0)
stats_summary = f"""
VERIFIED STATISTICAL DATA:
Basic Metrics:
- Total words: {total_words}
- Total sentences: {linguistic_metrics.get('total_sentences', 0)}
- Unique words: {linguistic_metrics.get('unique_words', 0)}
- MLU words: {linguistic_metrics.get('mlu_words', 0):.2f}
- MLU morphemes: {linguistic_metrics.get('mlu_morphemes', 0):.2f}
- Average sentence length: {linguistic_metrics.get('avg_sentence_length', 0):.2f}
Annotation Counts:
- Filler markers: {marker_counts.get('FILLER', 0)} ({marker_counts.get('FILLER', 0)/total_words*100:.2f} per 100 words)
- False starts: {marker_counts.get('FALSE_START', 0)}
- Repetitions: {marker_counts.get('REPETITION', 0)}
- Grammar errors: {marker_counts.get('GRAM_ERROR', 0)}
- Simple vocabulary: {marker_counts.get('SIMPLE_VOCAB', 0)}
- Complex vocabulary: {marker_counts.get('COMPLEX_VOCAB', 0)}
- Simple sentences: {marker_counts.get('SIMPLE_SENT', 0)}
- Complex sentences: {marker_counts.get('COMPLEX_SENT', 0)}
- Compound sentences: {marker_counts.get('COMPOUND_SENT', 0)}
Category Totals:
- Total fluency issues: {category_totals['fluency_issues']} ({category_totals['fluency_issues']/total_words*100:.2f} per 100 words)
- Total grammar errors: {category_totals['grammar_errors']}
- Vocabulary sophistication ratio: {category_totals['vocab_sophistication_ratio']:.3f}
"""
if lexical_diversity.get('library_available', False) and 'diversity_measures' in lexical_diversity:
measures = lexical_diversity['diversity_measures']
stats_summary += f"""
Lexical Diversity:
- Simple TTR: {measures.get('simple_ttr', 'N/A')}
- HDD: {measures.get('hdd', 'N/A')}
- MTLD: {measures.get('mtld', 'N/A')}
- MATTR: {measures.get('mattr_25', 'N/A')}
"""
# Create comprehensive analysis prompt
final_prompt = f"""
You are a speech-language pathologist conducting a comprehensive speech analysis. Use the verified statistical data provided and complete ALL 13 sections with detailed structure.
Patient: {age}-year-old {gender}
{stats_summary}
ANNOTATED TRANSCRIPT (for examples and quotes):
{annotated_transcript}
INSTRUCTIONS:
1. Use ONLY the verified statistical values above - do not recount anything
2. Complete ALL 13 sections without stopping
3. Provide specific examples and quotes from the transcript
4. Calculate rates and percentages using verified counts
5. Focus on clinical interpretation and actionable insights
6. If response is incomplete, end with <CONTINUE>
COMPREHENSIVE SPEECH SAMPLE ANALYSIS
1. SPEECH FACTORS
A. Fluency Issues (use verified counts):
- Filler words: Use verified count of {marker_counts.get('FILLER', 0)} fillers
* Calculate rate per 100 words: {marker_counts.get('FILLER', 0)/total_words*100:.2f}%
* Identify types and provide examples from transcript
* Provide objective count summary
- False starts: Use verified count of {marker_counts.get('FALSE_START', 0)}
* Provide specific examples from transcript
* Analyze patterns and self-correction abilities
- Repetitions: Use verified count of {marker_counts.get('REPETITION', 0)}
* Categorize types (word, phrase, sound level)
* Provide examples and count summary
- Total disfluency assessment: Use verified total of {category_totals['fluency_issues']}
* Rate: {category_totals['fluency_issues']/total_words*100:.2f} per 100 words
* Provide objective rate calculation
B. Word Retrieval Issues:
- Circumlocutions: Count and analyze from transcript
- Incomplete thoughts: Identify abandoned utterances
- Generic language use: Count vague terms
- Word-finding efficiency: Assess retrieval success rate
C. Grammatical Errors (use verified counts):
- Grammar errors: Use verified count of {marker_counts.get('GRAM_ERROR', 0)}
- Syntax errors: Use verified count of {marker_counts.get('SYNTAX_ERROR', 0)}
- Morphological errors: Use verified count of {marker_counts.get('MORPH_ERROR', 0)}
- Calculate overall grammatical accuracy rate
2. LANGUAGE SKILLS ASSESSMENT
A. Vocabulary Analysis (use verified data):
- Simple vocabulary: Use verified count of {marker_counts.get('SIMPLE_VOCAB', 0)}
- Complex vocabulary: Use verified count of {marker_counts.get('COMPLEX_VOCAB', 0)}
- Sophistication ratio: Use verified ratio of {category_totals['vocab_sophistication_ratio']:.3f}
- Type-Token Ratio: Use verified TTR from basic metrics
- Provide examples of each vocabulary level from transcript
B. Grammar and Morphology:
- Error pattern analysis using verified counts
- Pattern analysis only
- Morphological complexity evaluation
3. COMPLEX SENTENCE ANALYSIS (use verified counts)
A. Sentence Structure Distribution:
- Simple sentences: Use verified count of {marker_counts.get('SIMPLE_SENT', 0)}
- Complex sentences: Use verified count of {marker_counts.get('COMPLEX_SENT', 0)}
- Compound sentences: Use verified count of {marker_counts.get('COMPOUND_SENT', 0)}
- Calculate percentages of each type
B. Syntactic Complexity:
- MLU analysis: Use verified MLU of {linguistic_metrics.get('mlu_words', 0):.2f} words
- Average sentence length: Use verified length of {linguistic_metrics.get('avg_sentence_length', 0):.2f} words
- Subordination and coordination patterns
4. FIGURATIVE LANGUAGE ANALYSIS
- Figurative expressions: Use verified count of {marker_counts.get('FIGURATIVE', 0)}
- Metaphor and idiom identification from transcript
- Age-appropriate development assessment
- Abstract language abilities
5. PRAGMATIC LANGUAGE ASSESSMENT
- Topic shifts: Use verified count of {marker_counts.get('TOPIC_SHIFT', 0)}
- Tangential speech: Use verified count of {marker_counts.get('TANGENT', 0)}
- Coherence breaks: Use verified count of {marker_counts.get('COHERENCE_BREAK', 0)}
- Referential clarity: Use verified count of {marker_counts.get('PRONOUN_REF', 0)}
- Overall conversational patterns observed
6. VOCABULARY AND SEMANTIC ANALYSIS
- Semantic errors: Use verified count of {marker_counts.get('SEMANTIC_ERROR', 0)}
- Lexical diversity: Use verified measures from stats summary
- Word association patterns from transcript analysis
- Semantic precision and appropriateness
7. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS
- Morphological complexity assessment
- Derivational and inflectional morphology patterns
- Error analysis using verified counts
- Pattern analysis only
8. QUANTITATIVE METRICS AND NLP FEATURES (use ALL verified data)
- Total words: {total_words}
- Total sentences: {linguistic_metrics.get('total_sentences', 0)}
- Unique words: {linguistic_metrics.get('unique_words', 0)}
- MLU words: {linguistic_metrics.get('mlu_words', 0):.2f}
- MLU morphemes: {linguistic_metrics.get('mlu_morphemes', 0):.2f}
- All error rates and ratios from verified counts
CRITICAL: Complete ALL 13 sections using verified data and specific transcript examples.
"""
# Get comprehensive analysis
final_result = call_claude_api_with_continuation(final_prompt)
return final_result
def run_full_pipeline(transcript_content, age, gender, slp_notes):
"""Run the complete pipeline but return annotation immediately"""
if not transcript_content or len(transcript_content.strip()) < 50:
return "Error: Please provide a longer transcript for analysis.", "", "Error"
# Step 1: Get annotation
annotated_transcript, annotation_status = run_annotation_step(transcript_content, age, gender, slp_notes)
if annotated_transcript.startswith("Error"):
return annotated_transcript, "", annotation_status
# Step 2: Run analysis
analysis_result = run_analysis_step(annotated_transcript, transcript_content, age, gender, slp_notes)
return annotated_transcript, analysis_result, "Complete analysis finished!"
def run_complete_speech_analysis(transcript_content, age, gender, slp_notes):
"""Run the complete speech analysis pipeline with ultimate analysis"""
if not transcript_content or len(transcript_content.strip()) < 50:
return "Error: Please provide a longer transcript for analysis.", "", "Error"
# Step 1: Annotate transcript
annotated_transcript, annotation_status = run_annotation_step(transcript_content, age, gender, slp_notes)
if annotated_transcript.startswith("Error"):
return annotated_transcript, "", annotation_status
# Step 2: Run ultimate analysis
ultimate_result = run_ultimate_analysis(annotated_transcript, transcript_content, age, gender, slp_notes)
return annotated_transcript, ultimate_result, "Complete speech analysis finished!"
# Single main event handler
ultimate_analysis_btn.click(
fn=run_complete_speech_analysis,
inputs=[transcript_input, age_input, gender_input, slp_notes_input],
outputs=[annotated_output, analysis_output, status_display]
)
annotate_btn.click(
fn=annotate_transcript,
inputs=[transcript_input_2, age_input_2, gender_input_2, slp_notes_input_2],
outputs=[annotation_output]
)
# Quick Questions event handler
ask_question_btn.click(
fn=answer_quick_question,
inputs=[transcript_input_4, question_input, age_input_4, gender_input_4, slp_notes_input_4],
outputs=[question_output]
)
# Targeted Analysis event handler
targeted_analysis_btn.click(
fn=analyze_targeted_area,
inputs=[transcript_input_5, analysis_area, age_input_5, gender_input_5, slp_notes_input_5],
outputs=[targeted_output]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |